
Tier 5 Calculus Lesson 1 Notes:   
Approach to learning Calculus 

Our approach to learning Calculus will be what is called “Heuristic.” 

From Wikipedia here is the definition of Heuristic. 

Heuristic (/hjʉˈrɪstɨk/; Greek: "Ε�ρίσκω", "find" or "discover") refers to 
experience-based techniques for problem solving, learning, and discovery that find 
a solution which is not guaranteed to be optimal, but good enough for a given set 
of goals. Where the exhaustive search is impractical, heuristic methods are used to 
speed up the process of finding a satisfactory solution via mental shortcuts to ease 
the cognitive load of making a decision. 

We will use the modern tool Wolfram-Alpha, WA, to explore and learn the 
concepts of calculus, and their application in solving problems. 

Many introductory calculus courses attempt to apply Rigor to the treatment 
and learning of calculus.  We feel this is premature for the first exposure or 
pass through the learning of calculus. 

From Wikipedia here is the definition of Rigour, or Rigor. 

Mathematical rigour can refer both to rigorous methods of mathematical proof 
and to rigorous methods of mathematical practice (thus relating to other 
interpretations of rigour). 

Mathematical rigour is often cited as a kind of gold standard for mathematical 
proof. It has a history traced back to Greek mathematics, in the work of Euclid. 
This refers to the axiomatic method.  

During the 19th century, the term 'rigorous' began to be used to describe decreasing 
levels of abstraction when dealing with calculus which eventually became known 
as analysis. The works of Cauchy added rigour to the older works of Euler and 
Gauss. The works of Riemann added rigour to the works of Cauchy. The works of 
Weierstrass added rigour to the works of Riemann, eventually culminating in the 
arithmetization of analysis. Starting in the 1870s, the term gradually came to be 
associated with Cantorian set theory. [And, the Zermelo-Frankel Set Theory, and 
ultimately Non-Standard Analysis] 



Most mathematical arguments are presented as prototypes of formally rigorous 
proofs. The reason often cited for this is that completely rigorous proofs, which 
tend to be longer and more unwieldy, may obscure what is being demonstrated.  

Steps which are obvious to a human mind may have fairly long formal derivations 
from the axioms. Under this argument, there is a trade-off  between rigour and 
comprehension.  

Historically, “infinitesimals” were used in a heuristic and intuitive 
approach to understanding the concepts of calculus and “proving” 
the various theorems and results.   

Infinitesimals were used by all of the great mathematicians starting 
with Archimedes, and proceeding with Newton and Leibniz, the 
inventors of calculus, and Euler who essentially created modern 
calculus and differential equations and much more. 

However, in the mid 1800’s mathematicians decided that the 
heuristic and intuitive approach, especially to infinite series and 
other infinite processes, was inadequate and needed to be treated 
with rigor. 

The Real and Complex Number systems were treated rigorously 
utilizing both a constructive and an axiomatic approach.  Then 
calculus was treated with rigor also, using what has become known 
as the ε, δ method. 

Truly modern rigor is only achieved in a modern analysis course, 
usually in graduate school.  This involves a modern treatment of the 
number systems and what is called “set theory” and “measure 
theory”. 

In the mid 1800’s mathematicians could not figure out any way to 
include the concept of infinitesimal numbers in a rigorous treatment 
of the number systems.  So they banned infinitesimals from modern 
mathematics!   

Engineers and some scientists continued to use them in their 
intuitive learning and heuristic problem solving.  There was quite a 
“split” between applied mathematicians, engineers, scientists and 
theoretical mathematicians. 

 



Calculus textbooks started to apply some “rigor” in the mid 20th 
Century. Unfortunately, this made learning calculus for the first time 
quite laborious and difficult.  Mastering a concept rigorously, or even 
quasi-rigorously, is much more difficult than understanding the 
concept heuristically and intuitively.   

Consequently, many students “failed” in their study of calculus and 
subsequently were alienated from mathematics and sometimes 
blocked from pursuing a STEM career. I witnessed this first hand in 
the mid 20th century, and find it is even worse today.   

Ironically, in the 1960’s mathematicians finally succeeded in 
including infinitesimals into a rigorous treatment of numbers called 
nonstandard analysis.  Now the heuristic approach to calculus using 
infinitesimals could be made just a rigorous as the ε, δ approach. 

I believe that the best approach to learning calculus for the first 
time is to use the heuristic and intuitive approach with 
infinitesimals.  That is what we will do in this treatment of calculus.  
All of our infinitesimal arguments can be made completely rigorous 
by modern standards. 

I also believe in using the modern tool of Wolfram-Alpha, WA, to 
both understand concepts and solve problems is the very best way 
to proceed in learning calculus, especially for STE students.  Rigor 
for future mathematicians should be put off until a second pass 
through the subject. 

The result is that a student can master the concepts of calculus and 
their applications utilizing WA in a much shorter span of time than 
the current standard curriculum approach to calculus. 

 

 

 

 

 

 

 



Tier 5 Calculus Lesson 1 Overview:  What is it? 

Functions are the main way STEM professionals represent 
various things they are studying.  Understanding the 
various things one needs to know about functions is one 
major Key to success in STEM. 

“Calculus” is an important set of tools utilized in the 
analysis of and understanding of “Functions”. 

A function, f, is the relationship between two variables, 
which represent two entities.   

y = f(x) indicates a relationship between the “independent 
variable x” and the “dependent variable y”. In calculus, x 
and y are both real numbers. 

The Graph of f, is the set of points in the x-y plane, (x,f(x)) 
where x is in the “domain” of the function. The quickest 
and easiest, way to understand the behavior of a function 
is to analyze its graph which reveals the function’s 
behavior in a very intuitive geometric way, both locally and 
globally. 

Calculus is the study of two things, “the rate of change” 
and “the accumulation of change” for any type of 
phenomenon that is modeled by some function. 

‘Rate of Change’ is dealt with using the concept of 
“Derivative” or Differential Calculus 

‘Accumulation of Change’ is dealt with using the concept of 
“Integral” or Integral Calculus. 

 

 



Historically, in the 17th and 18th centuries mankind 
developed a set of tools which can be used to “solve 
calculus problems” that arise in STE, Science, Technology, 
and Engineering.   

You may think of these tools as manual tools like those 
used in “old fashioned” carpentry or automotive 
mechanics or manufacturing. 

Today, in the 21st century, we have automated tools like 
Wolfram Alpha, WA, that enable us to solve calculus 
problems, just as we have automatic tools for carpentry, or 
automotive mechanics or manufacturing. 

While it might be interesting, or even instructive, to learn 
to use the old fashioned classical tools, it is imperative we 
master the new modern tools since these are what we 
STEM professionals will be using to solve calculus 
problems. 

What is really important is to understand the “concepts” of 
calculus.  That is what we will emphasize, along with 
learning the modern tool WA.  Indeed, WA will also help us 
understand the concepts too. 

We will include a limited treatment of the classical “hand 
tools” of calculus for those who might be interested in 
them, or those who might be tested on them by someone 
or some institution. 

At this point in time (2015), calculus in most schools, both 
high school and university in the U.S., is still taught using 
the classical “hand tools”.  These are difficult to master, 
particularly the integral calculus tools, and cause many 
STE students to struggle with math.   



Modern tools like WA make the learning and practice of 
calculus quite easy, just as a modern scientific calculator 
makes arithmetic orders of magnitude easier than the old 
fashioned classical manual techniques of calculation. 

In Tier 5 we will present calculus primarily utilizing WA, 
and offer the classical approach as a supplement for those 
students interested in this approach for some reason.  This 
classical approach might best be left for a second pass 
through the program. 

As you might expect, calculus is easy to learn and master 
utilizing the modern tool WA. 

Any 21st century STE student should be utilizing a modern 
tool like WA when learning a STE subject and solving STE 
problems. 

Before we begin our study of calculus, we will begin by 
studying the graphs of functions, since we can use WA to 
create these graphs. 

This will then make it much easier to understand the 
concepts of calculus, and the subsequent use of the 
modern tools to solve calculus problems that arise in all 
STEM subjects. 

Unfortunately, we know of NO calculus textbook that 
approaches the subject in this modern 21st century way.   

So, you will have to rely on these notes, and the notes you 
will be generating for yourself as you learn and use WA.  

 

 



T5 C1 Approach to Learning Calculus – Exercises 

Q1.  What does ‘heuristic’ mean? 

Q2. What is mathematical rigour? 

Q3.  What does ‘rigorous’ mean? 

Q4.  What is an axiom? 

Q5.  The ban of infinitesimals caused a split between those using a heuristic 
approach and those using a rigorous approach.  In the 1960’s, 
mathematicians finally succeeded in including infinitesimals into a 
rigorous treatment of numbers using what? 

Q6.  What modern tool allows students to both understand calculus concepts 
and solve problems? 

Q7.  What is a function? 

Q8.  In y = f(x), which variable is the dependent variable? 

Q9.  In y = f(x), which variable is the independent variable? 

Q10.  What is calculus? 

  



A1.  ‘Heuristic’ refers to experience-based techniques for problem solving, 
learning, and discovery that find a solution which is not guaranteed to 
be optimal, but good enough for a given set of goals. 

A2.  Mathematical rigour can refer both to rigorous methods of 
mathematical proof and to rigorous methods of mathematical practice 
(thus relating to other interpretations of rigour). 

A3.  ‘Rigorous’ is using an “axiomatic” approach to prove theorems about a 
mathematical subject such as calculus. 

A4.  Axiom is a rule or a statement that is accepted as true without proof. 

A5.  Nonstandard analysis 

A6.  Wolfram Alpha 

A7.  The relationship between two variables 

A8.  y 

A9.  x 

A10.  Calculus is the study of two things, “the rate of change” and “the 
accumulation of change” for any type of phenomenon that is modeled 
by some function. 



 

Tier 5 Calculus Lesson2 Notes:   
Function Graph Terms Definitions 

Function f :    y = f(x),   x ε D ≤ R,   y ε R  

D = Domain = Set of real numbers f(x) is defined for. 

R = Real Numbers,  

≤ means “is a subset of”,     ε means “is contained in” 

Graph of f, Set of (x, f(x)) in plane, x ε D 

Terms describing f, at (a, f(a)) for any number a ε D 

Defined  f(a) is defined, a ε D 

 

Continuous        f(a) = Limit of f(x) as x  a 

 

 

Smooth  Has tangent line at (a, f(a))  

 

 

Increasing Left to Right Graph is going up 

 

 

Decreasing Left to Right Graph is going down 

 

 

Stationary Point     Tangent Line is horizontal, slope 0.   

 



 

Max or Maximum (Local) f(a – h) < f(a) > f(a + h) 

 

 

Min or Minimum (Local) f(a – h) > f(a) < f(a + h) 

 

 

Concave Up Tangent line slope increasing 

 

 

Concave Down Tangent line slope decreasing 

 

 

Inflection Point at (a, f(a))  Concavity switching directions 

 

 

Vertical Asymptote (Usually a not in Domain) 

f(x)  ∞ or f(x)  -∞   as x  a from left or right 

 

 

 

Asymptote g(x) when x  ∞ or x  -∞ 

 f(x)  g(x) as x  ∞ or x  -∞ 

 

 



 

T5 C2 Graph Examples 

Plot Absolute Value x 

Plot x/(Absolute Value x) 

Plot (x-1)^2 + 3 

Plot (x-1)^3 + 3 

Plot (x+2)/((x-1)(x+1)) from x=-3 to 2 

 

You will also want to use commands: 

Roots 

Stationary Points 

Inflection Points 

Asymptotes 

 

See examples in T5 C2a 

 

 

 

 



T5 C2 Function Graph Terms Definitions – Exercises 

 

Figure 1       Figure 2 

Q1. In Figure 1, is the function continuous?  

Q2. In Figure 1, at Point “a” is the function concave up or concave down? 

Q3. In Figure 1, at Point “c” is the function concave up or concave down? 

Q4. In Figure 1, Point “b” is known as a(n)? 

Q5. In Figure 2, is the function continuous? 

Q6. In Figure 2, what occurs in the function at the value x=1? 

 

Figure 3       Figure 4 

Q7. In Figure 3, the function at the value x=0 is a minimum or maximum? 

Q8. In Figure 3, is the function at the value x=0 a stationary point? 

Q9. In Figure 4, is the function continuous? 

Q10. In Figure 4, is the function smooth?  



A1.  Yes  

A2.  Concave down 

A3.  Concave up 

A4.  Inflection point 

A5.  No 

A6.  Vertical asymptote 

A7.  Minimum 

A8.  Yes  

A9.  Yes 

A10.  No 



 
 

Tier 5 Calculus Lesson 2A Notes:  Graph Examples 

NOTE:  You should use Wolfram Alpha and enter each of 
these instructions and print them out so you can follow 
what I am doing in the video.   

Pause the video each time and enter the example into WA 
and print it out and then try to understand the print out, 
and then continue the video. 

You will learn “by doing”, not just watching me. 

I used a slightly condensed version of these notes in the 
video, but all the examples are the same. 

Example 1 

Plot  ((x+1)^2*(x-2)^2)/((x-1)*(x+2)) from x=-5 to 5 

Roots  ((x+1)^2*(x-2)^2)/((x-1)*(x+2))  

Stationary Points  ((x+1)^2*(x-2)^2)/((x-1)*(x+2)) 

Inflection Points  ((x+1)^2*(x-2)^2)/((x-1)*(x+2)) 

Asymptotes  ((x+1)^2*(x-2)^2)/((x-1)*(x+2)) 

 

 

Example 2 

Plot y=x^5 -3x^4 -6x^3 +15x^2 +4x -12 

Roots x^5 -3x^4 -6x^3 +15x^2 +4x -12 

Stationary Points  x^5 -3x^4 -6x^3 +15x^2 +4x -12 

Inflection Points  x^5 -3x^4 -6x^3 +15x^2 +4x -12 

Asymptotes x^5 -3x^4 -6x^3 +15x^2 +4x -12 



 
 

 

Example 3 

Plot (x^2sin(x))/ln(x^6) 

Roots (x^2sin(x))/ln(x^6) 

Stationary Points  (x^2sin(x))/ln(x^6) 

Stationary Points  (x^2sin(x))/ln(x^6) from x = -30 t0 30 

Inflection Points  (x^2sin(x))/ln(x^6) 

Inflection Points  (x^2sin(x))/ln(x^6) from x = 2 to 20 

Asymptotes (x^2sin(x))/ln(x^6) 

 

NOW, do the exercises and learn WA by playing with it. 

You will learn any STEM subject by playing with it and 
doing many exercises. 

It will be of great benefit to you if you make up your own 
exercise too. 
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T5 C2A Graph Examples – Exercises 

In Wolfram Alpha (WA), plot the following functions, as well as find all roots, 
stationary points, inflection points, and asymptotes.  NOTE: Most of these 
examples here are much too difficult to do manually.  This demonstrates the 
power of WA.  However, even WA sometimes fails, and you must use your 
judgment.  Always refer to the Plot or Graph to check WA’s answers. 

You can go to any calculus book and answer these questions for any of their 
problems. 

Q1.  f(x) = 4x5 -6x4 - 3x3 +8x2 +3x -6 

Q2.  f(x) = (x-3)2(-x+6)3 
          (x-6)2(2x+4) 

Q3. f(x) = sin(2x) 
        tan(3x) 

 
Q4.  f(x) = -(3x-2)((x+6) 
                       (x+3) 

Q5.  f(x) = sin(3x)-4x2+3x3 

Q6.  f(x) = sin(5x) 
                 3x3+4x2 
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A1.  WA plot 4x^5 -6x^4 - 3x^3 +8x^2 +3x -6 

        

        WA roots 4x^5 -6x^4 - 3x^3 +8x^2 +3x -6 

 x = 1 
 x ~~ -0.857559-0.431517 i 
 x ~~ -0.857559+0.431517 i 
 x ~~ 1.10756-0.633158 i 
 x ~~ 1.10756+0.633158 i 
 

Note:  Only one real root at x = 1        

WA stationary points 4x^5 -6x^4 - 3x^3 +8x^2 +3x -6 

 4 x^5-6 x^4-3 x^3+8 x^2+3 x-6~~-5.26118  at  x~~-0.687089   (maximum) 
 4 x^5-6 x^4-3 x^3+8 x^2+3 x-6~~-6.27036  at  x~~-0.179353   (minimum) 
 
 Note:  Compare them with the graph to see if you believe them. 
  

  WA inflection points 4x^5 -6x^4 - 3x^3 +8x^2 +3x -6 

 4 x^5-6 x^4-3 x^3+8 x^2+3 x-6~~-5.7085  at  x~~-0.472418 
 4 x^5-6 x^4-3 x^3+8 x^2+3 x-6~~-3.34795  at  x~~0.468199 
 4 x^5-6 x^4-3 x^3+8 x^2+3 x-6~~-0.557443  at  x~~0.904219 
   

  Note: Again compare to graph.  See how they agree. 
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   WA asymptotes 4x^5 -6x^4 - 3x^3 +8x^2 +3x -6 

 4 x^5-6 x^4-3 x^3+8 x^2+3 x-6 is asymptotic to 4 x^5-6 x^4-3 x^3+8 x^2+3 x-6 
 

Note:  It is asymptotic to itself.  This will be true for all polynomials. 

 

A2.  WA plot ((x-3)^2(-x+6)^3)/((x-6)^2(2x+4)) 

        

     WA roots ((x-3)^2(-x+6)^3)/((x-6)^2(2x+4))        

  x = 3 
 

Note:  This is clearly wrong.  x = 6 is a root also just looking at the 
numerator.  What happened? 

simplify ((x-3)^2(-x+6)^3)/((x-6)^2(2x+4)) and you will get 
((x-3)^2(-x+6))/(2x+4) 

WA roots ((x-3)^2(-x+6))/(2x+4)   will yield  x = 3 and x = 6. 

So Wolfram Alpha made a mistake when (x-6) was duplicated in both 
numerator and denominator. 
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You must always double check.  I like to check the results against the graph. 
That is how I spotted this mistake, and then it was easy to correct. 

WA is a great tool, but not infallible.        

 

WA stationary points ((x-3)^2(-x+6)^3)/((x-6)^2(2x+4))        

  = 0  at  x = 3   (minimum) 
  = -3/2 (39+16 sqrt(6))  at  x = -2 sqrt(6)   (maximum) 
  = -117/2+24 sqrt(6)  at  x = 2 sqrt(6)   (maximum) 
 

Looks good if you study the graph. 

 

      WA inflection points ((x-3)^2(-x+6)^3)/((x-6)^2(2x+4)) 

  ~~0.132319  at  x~~3.84804 
 

Looks good. 

 

      WA asymptotes ((x-3)^2(-x+6)^3)/((x-6)^2(2x+4)) 

  Vertical asymptotes 
  ((6-x)^3 (x-3)^2)/((x-6)^2 (2 x+4))->±infinity   as   x->-2 
 

Note:  Now WA recognizes that x = 6 is not an asymptote.  This is due to 
fact that it (x-6) factor is not really there since it cancels. 

  
  Parabolic asymptotes 
  ((x-3)^2 (-x+6)^3)/((x-6)^2 (2 x+4)) is asymptotic to -x^2/2+7 x-73/2 

 
Looks good. 
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A3.  WA plot sin(2x)/tan(3x) 

        

WA roots sin(2x)/tan(3x) 

 x = 1/6 pi (2 n-1) and n element Z 
 x = pi (n-1/2) and n element Z 
 

Looks good.  Note there are infinitely many.  So one for each integer n. 

       

WA stationary points sin(2x)/tan(3x) 

 = 0  at  x = 1/2 (4 n pi-pi)  for integer n  (minima) 
 = 0  at  x = 1/2 (4 pi n+pi)  for integer n  (minima) 

Looks good too 

WA inflection points sin(2x)/tan(3x) 

 (no inflection points found) 
 

This I believe from graph 

WA asymptotes sin(2x)/tan(3x) 

 none 
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Oops.  This is obviously not true from graph. 

So find out when denominator is 0, and numerator not 0. 

WA roots tan(3x) 

 x = nPi/3 for all integers n. 

 

A4.  WA plot -((3x-2)(x+6))/(x+3) 

        

      WA roots -((3x-2)(x+6))/(x+3) 

 x=-6 
 x=2/3 
       

WA stationary points -((3x-2)(x+6))/(x+3) 

 (no stationary points found) 
 

WA inflection points -((3x-2)(x+6))/(x+3) 

 (no inflection points found) 
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  WA asymptotes -((3x-2)(x+6))/(x+3) 

Vertical asymptotes 
 -((x+6) (3 x-2))/(x+3)->±infinity   as   x->-3 
  

Oblique asymptotes 
 -((3 x-2) (x+6))/(x+3) is asymptotic to -3 x-7 

 
 All of these seem to check with the graph. 

 

A5.  WA plot sin(3x)-4x^2+3x^3 

        

You might want to plot this function without the sin term first.  Then with the 
sin term 

You might want to plot this with sin(13x) from x = -2 to 2 

Play with it.     

   WA roots sin(3x)-4x^2+3x^3 

 x = 0 
 x ~~ 0.674522 
 x ~~ 1.47991 
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        WA stationary points sin(3x)-4x^2+3x^3 

 ~~0.508247  at  x~~0.328557 
 ~~-1.0317  at  x~~1.15997 

      

   WA inflection points sin(3x)-4x^2+3x^3 

 ~~-0.32424  at  x~~0.791484 
      

  WA asymptotes sin(3x)-4x^2+3x^3 

 Polynomial asymptotes 
 sin(3 x)-4 x^2+3 x^3 is asymptotic to x^2 (3 x-4) 

 Note: it is just asymptotic to the polynomial without the sin term.  This to 
be expected since the sin term can only add something between -1 and 1 

 

A6.  WA plot (sin(5x))/(3x^3+4x^2) 

      

       WA roots (sin(5x))/(3x^3+4x^2) 

 x = (2 pi n)/5 and n (3 pi n+10)!=0 and n element Z 
 x = 1/5 pi (2 n+1) and (2 n+1) (pi (6 n+3)+20)!=0 and n element Z 
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WA stationary points (sin(5x))/(3x^3+4x^2) 

 (no stationary points found) 
 

Clearly, not true.  So what to do? 

 

Restrict domain,   from x = -10 to 10 

WA stationary points (sin(5x))/(3x^3+4x^2) from x = -10 to 10 

 

Now there are many of them. 

 

WA simply cannot find the general formula for the whole domain. 

Always use your common sense and look at the graph as a check! 
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WA inflection points (sin(5x))/(3x^3+4x^2) 

  
Asymptotes 

Horizontal asymptotes 

 (sin(5 x))/(3 x^3+4 x^2)->0   as   x->±infinity 
  

Vertical asymptotes 

 (sin(5 x))/(3 x^3+4 x^2)->±infinity   as   x->-4/3 
 (sin(5 x))/(3 x^3+4 x^2)->±infinity   as   x->0 
 

Play with lots of examples.   

Always try to check the answers against the Graph. 

If you have someone to work with, give each other problems to try out. 

Once, you study STEM subjects you will get many more examples that come 
up in all sorts of science and engineering math models. 
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Then, you will really appreciate the tool WA. 



 

Tier 5 Calculus Lesson 3 Notes: 

Derivative     Differential Calculus 

Def.  Let y = f(x) be a real valued function.  f’(a) is defined 
to be the slope of the tangent line to the graph of f, at the 
point (a, f(a)).  The tangent line is the unique straight line 
through this point “tangent” to the curve. 

f’(a) is called the derivative of f at x = a.  f’(x) is the 
derivative of f at x, and sometimes written dy/dx  or  y’ or 
y’(x)  in these latter cases it is understood that the 
derivative is evaluated at each x in the domain of f. 

 

The slope of this tangent line can be computed as follows: 

Definition of Infinitesimal, h.  An infinitesimal, h, is a 
hyperreal number whose absolute value is less than any 
real number.  Think of h as a very small number. 

“std” means the unique real number part of the hyperreal 
number,  e.g. std(3 + h) = 3 

Modern (and original) definition of f’(a) 

f’(a) = std[(f(a+h)-f(a))/h] where h is any nonzero 
infinitesimal.  

Alternate definition of f’(a)  

f’(a) = limit[(f(a+h)-f(a))/h] as h  0 where h is any 
nonzero real number.  This is the 19th century definition 
still used in many calculus books.  The infinitesimal 
definition is the modern definition available since 1966, 
and also the original definition. 



 

Also, we write f’(a) = dy/dxlx=a = y’(a) = Dxf(a) 

Rules for infinitesimals.  

Let h and k be nonzero infinitesimals, a and b real numbers 
with b nonzero. 

1.  a + h, b + k are hyperreal numbers, and 
    std(a+h)= a and std(b+k)=b 
 

2. std(h) = 0 
 

3. 0/h = 0 
 

4.  ah and bk  and hk and h/b and h+k  are all 
infinitesimal numbers 
 

5. std[(a +h) o (b+k)] = std(a+h) o std(b+ k) = a o b  
where o is any operator  +   -   X   / 
 

6. hn is infinitesimal when n is integer > 1 
 

7. hn<hn-1 for any integer n>1 
 

8. a/h is infinite hyperreal, which we will not use. 
 

9. h/k is indeterminate 

Note: When computing derivative, f’(a) with a TI30Xa 
calculator just let a be any domain number, and h = 
.0000001.  Then you will get the answer to a high degree 
of accuracy.  Nothing is exact in the physical world.  There 
are no irrational or infinitesimal numbers in the physical 
world, only rational approximations. 

The Hyperreal Numbers can be constructed from the Real 
Numbers, or treated axiomatically.  This was achieved by 



 

mathematicians in the 1960’s.  Hyperreal numbers are just 
as “real” as Real Numbers or Complex Numbers. 

Examples 

1. y = f(x) = x3    Find f’(4), f’(a), and f’(x).  

With TI30Xa Calculator 

f’(4) =std{[(4+.000001)3 – 43]/.000001} = 
std(48.00001) = 48 

f’(a) = std{[(a+h)3 – a3]/h}  

= std{[a3+3a2h+3ah2+h3 – a3]/h} 

= std{3a2 + 3ah + h2} = 3a2     

y = f’(x) = 3x2 by same calculation where x = a. 

Note: 3(4)2 = 48.   

Which was easier to compute? 

2. y = f(x) = xn, for any integer n >0, then 

f’(x) = nxn-1 

Demo:  f’(x) = std{[(x+h)n – xn]/h} = 

                       std{nxn-1+h(numbers)}= nxn-1 

Note use of Binomial Theorem.  The lead term xn cancels 

with –xn, and the next term is nxn-1h which then cancels 
with the h in the denominator and all of the remaining 
terms have higher powers of h. 

3. y = f(x) = C for some constant number C. 

Demo: f’(x) = std{[C – C]/h} = 0 



 

 

 
 

4. y = f(x) = SIN(x)   Find f’(x) Use Radian Measure for x 
 

    Note:  SIN(.000001)/.000001 = 1 = COS(.000001)  

 [(cos(.000001) – 1)/.000001] = 0 

Assume the following which can be rigorously proven:     

std{SIN(h)/h}= std{COS(h)}= 1     

std{(COS(h) -1)/h} = 0   

Demo: f’(x) = std{[SIN(x+h) – SIN(x)]/h} = 

std{[SIN(x)COS(h) + SIN(h)COS(x) – SIN(x)]/h} = 

std{[SIN(x)(COS(h)-1)]/h + [SIN(h)COS(x)/h]} = 

SIN(x)std[(COS(h)-1)]/h] + COS(x)std[SIN(h)/h] 

SIN(x)X0 + COS(x)X1 = COS(x) 

Thus, if f(x) = SIN(x), then f’(x) = COS(x) 

Find f’(2.4) 

Std{[SIN(2.4 +.000001) – SIN(2.4)]/.000001} 

= -.73739406,      COS(2.4) = -.737393716  

Which is easier? 



 

But, if you don’t know a formula for the derivative you 

can always use the calculator for any function to find its 

derivative at a specific point in the domain. 

5. If y = f(x) = COS(x), then, dy/dx = f’(x) = -SIN(x) 
Demo or Proof:  Exercise 
 
 
 
 
 
 
 
 
 
 
 
 
Find    f’(.87) = 
std[(COS(.87+.000001) – COS(.87)/.000001] = 
-.764329 = -SIN(.87) 
 
Which is easier?   
 
The definition or knowing f’(x) = -SIN(x)? 

 

6. If y = f(x) = 1/x = x-1, then f’(x)= -1/x2 = -x-2 
 
f’(x) = std{[1/(x+h) – 1/x]/h} =  
 



 

std{[x-(x+h)]/(x+h)xh} = 
 
std{-1/(x+h)x} = -1/x2 = -x-2 

 
 
 

7. If y = f(x) = 1/xn = x-n for n a positive integer, 
 

Then  dy/dx = f’(x) = -n/x-n-1 = -nx-n-1 
 
Demo or Proof:  
 
Exercise, best done using the Chain Rule, which is in 
T5 C7 lesson, and #2 and #6 above. 
 
So come back and study this after T5 C7. 
 
 

f(x) = (1/x)n = x-n 
 

So, f’(x) = n(1/x)n-1(-x-2) = -n(x)1-n-2 = -nx-n-1 

 

Calculus is like all math.  How you solve a problem, or 
if you can solve it, depends on what tools are 
available to you. 
 
In the next lesson you will learn to use the powerful 
21st century tool, Wolfram Alpha to find derivatives. 

 

 

 



T5 C3 Derivative Differential Calculus – Exercises 

Q1.  If y = f(x) is a real valued function, define f’(a). 

Q2.  What is the tangent line in calculus? 

Q3.  What is an infinitesimal, h? 

Q4.  What is the modern definition of f’(a)? 

Q5.  When computing derivative f’(a), you will get the answer to a high 
degree of accuracy with a TI30Xa calculator by using what value for 
your infinitesimal?. 

Q6. What does “std” mean? 

Q7.  If y = f(x) = 2x3 +5x2

Q8.  If y = f(x) = 2/x

 -3x +4, find f’(x) and f’(3). 

3 +5/x2

Q9.  If y = f(x) = 2/x

 -3/x +4, find f’(x) and f’(3). 

3

Q10.  If y = f(x) = tan(x), find f’(x) and f’(3π). 

, find f’(x) and f’(3). 

  



A1.  f’(a) is defined to be the slope of the tangent line to the graph of f, at 
the point (a, f(a)). 

A2.  The tangent line is the unique straight line through this point “tangent” 
(perpendicular) to the curve. 

A3.  An infinitesimal, h, is a hyperreal number whose absolute value is less 
than any real number. 

A4.  f’(a) = std[(f(a+h)-f(a))/h] where h is any nonzero infinitesimal. 

A5.  0.0000001 

A6.  “std” means the unique real number part of the hyperreal number. 

A7.  f’(x) = 6x2

A8.  f’(x) = -6/x

 + 10x – 3, f’(3) = 81 

4 – 10/x3 + 3/x2 or f’(x) = (3x2 – 10x – 6)/x4

A9.  f’(x) = -6/x

,  f’(3) = -
0.111111 

4

A10.  f’(x) = sec

, f’(3) = -0.0740740 

2

 

(x), f’(3π) = 1 



Tier 5 Calculus Lesson 4 Notes: 
Derivatives of Functions 

 
This is a list of the derivatives of many common well 
known functions. 

You can “derive” these derivatives using the definitions of 
the functions, various things we know about them, and 
facts about infinitesimals.  It also is often best to utilize 
various “rules” governing derivatives we will list in the 
lessons T5 C6 and C7. 

However, the quickest and easiest way to find the 
derivative of a function is to ask Wolfram Alpha, WA. 

Simply type in   derivative “formula for the function” 

Example:  derivative SIN(x)  or   derivative sin(x) 

Answer  COS(x)    WA also gives the graph of the 
derivative and some other information. 

Example:  derivative xn 

Answer:   nxn-1   Note: Use of Partial Derivative Notation. 

You will probably want to learn the derivatives of many of 
the common functions. 

Verify them all with WA. 

If you are going to become a mathematician you will 
probably want to “prove” many of  these formulas using 
infinitesimals, or the older techniques often taught in 
today’s calculus textbooks. 

If you are going to become a STE student, then you 
probably will just accept them as true thanks to WA. 



 

List of Functions and their Derivative Function 

f(x)   f’(x)  x is a real number in domain of f 

xn   nxn-1    n is any non zero real number 

SIN(x)  COS(x) 

COS(x)  -SIN(x) 

TAN(x)  SEC2(x) 

ex   ex  

LN(x)  1/x = x-1 

ax   LN(a)ax      a > 0 

Loga(x)  1/xLog(a) 

 

Verify these with Wolfram Alpha 

Commit these to memory if you are going to be tested 
on your ability to find derivatives. 

Then, using the Rules of Differentiation you will be 
able to find the derivatives of much more complicated 
functions pretty easily. 

For example  f(x) = [SIN(x3) + e5x]1/2 

f’(x) =.5[SIN(x3) + e5x]-1/2 [3x2COS(x3) + 5e5x] 

Note: There was a small mistake in the notes in the video 
which has been corrected here.  Do you see it?  



This actually is very easy using the Rules which you 
will learn in the Lessons T5 C6 and C7.   



T5 C4 Derivatives of Functions – Exercises 

Use Wolfram Alpha to find the derivatives of the following functions: 

Q1.  f(x) = 2(5x2 + 3x – 7)3 

Q2.  f(x) = (4x3 – 2x2 – x2 +8)/(3x2 + 5x +2) 

Q3.  f(x) = 3sin(5e4x) 

Q4.  f(x) = sin(cos(x2)) 

Q5.  f(x) = (x-5)(2x+3) 
             x2+2x 

Q6.  f(x) = cos(2x3+6x2) 
         4x2 

Q7.  f(x) = tan(e6x^2) 
           3x3+4x2 

Q8.  f(x) = sin(2x)cos(3x2) 

Q9.  f(x) = sin(2x) 
         cos(3x2) 

Q10.  f(x) = (4x3-3x2+6x-3) 
         tan(3x) 

  



A1.   

A2.   

A3.   

A4.   

A5.   

A6.   

A7.   

A8.   

A9.   

A10.   



 

Tier 5 Calculus Lesson 5 Notes: 

Application of Derivatives for Graphs 

Graphing a Function, f(x) 

1.  One wants to plot the function over an 
appropriate range of domain values. 

This has been very difficult classically.  
Graphing calculators made it much easier, 
and now, Wolfram Alpha makes it even 
easier.   This you have already learned and 
calculus doesn’t help much here. 

2.  One wants to determine the Roots, where 
f(x) = 0 and crosses the x axis.  Again WA 
does this for you, and calculus won’t help 
much. 

3. One wants to determine all of the 
Asymptotes, where f(x) approaches a vertical 
line as x  a or another function g(x) as x ∞ 

These usually are determined algebraically, 
or with a tool like Wolfram Alpha.  Calculus 
doesn’t help much here either. 

 

 



 

4. Increasing, Decreasing, and Concavity are 
obvious once one has graphed the function. 
However, there are tests for these at any 
specific point x = a using derivatives. See the 
Function Graph Term Sheet for Calculus  

Classically, this was used to help construct 
the graphs manually. 

5. Determine maxima, minima, and points of 
inflection.   

Historically, Calculus was used to do this. 

But, once again Wolfram Alpha does this for 
you as you have already learned. 

Stationary(critical) points are where f’(x) = 0 
and these are possible local maxima, minima 
or points of inflection. 

6. Inflection points are where the concavity 
switches signs.  Then f’’(x) = 0, but not 
conversely. 

WA does this for you automatically, as you 
have learned. 

 



 

The conclusion we can draw is that using 
derivatives to graph functions and determine 
max, min, inflection points, and concavity are 
no longer the easy or best way to do it. 

But, let’s look at an example of what you 
could be taught in a traditional calculus 
course and  

1. How it would be done with WA, and then 
2. How it would have been done 

historically with calculus prior to WA. 

Indeed, you can construct the graph and 
analyze any function with these five WA 
steps. 

Many examples that arise in STEM are 
actually too difficult to even do in a 
reasonable length of time the classical way. 

But, WA can handle virtually any function. 

This is possible because your problem is 
being dealt with by a large bank of computers 
running a very sophisticated program, 
Mathematica. 

 



 

Example: f(x) = x5 -3x4 -5x3 +15x2 +4x -12 

A polynomial we will first graph and analyze 
with WA 

1 Plot x^5 -3x^4 -5x^3 +15x^2 +4x -12 

2 Roots x^5 -3x^4 -5x^3 +15x^2 +4x -12 

Maxima x^5 -3x^4 -5x^3 +15x^2 +4x -12 

Minima x^5 -3x^4 -5x^3 +15x^2 +4x -12 

3 Stationary Points  

x^5 -3x^4 -5x^3 +15x^2 +4x -12 

4 Inflection Points   

x^5 -3x^4 -5x^3 +15x^2 +4x -12 

5 Asymptotes 

x^5 -3x^4 -5x^3 +15x^2 +4x -12 

How would you do this with calculus and 
derivatives the classical way? 

There is no easy way to find the roots with 
calculus.  You would have to use algebra 
algorithms, if you could, or use 
approximation techniques like Newton’s 
method. 



 

Next you try to find the values of x where the 
first derivative f’(x) = 0.  These are called 
critical points and might be maxima, or 
minima, or points of inflection.  Additional 
tests are required to determine these. 

This may give you an idea of where the roots 
are located approximately so you can use 
Newton’s Method. 

Then, you find the points where the second 
derivative, f’’(x) = 0.  These might be points 
of inflection.  But additional tests are 
required to find out. 

Once you know the maxima, minima you can 
graph the function.  The roots help make this 
graph more accurate as do the points of 
inflection. 

At any particular point, a, you may determine 
if the function is increasing or decreasing by 
f’(a)>0 for increasing, and f’(a)<0 for 
deceasing. 

Similar tests are available for concavity tests. 

f’’(a)>0 concave up, f’’(a)<0 concave down. 



 

f’’(a)=0 might be a point of inflection.  It 

could be a max or min like f(x) = x4 + 5 

where f’’(x) = 12x2 = 0 for x = 0 and is a 
minimum. 

Now, let’s do the above example using the 
classical techniques with derivatives. 

f(x) = x5 -3x4 -5x3 +15x2 +4x -12 

Find roots first.  Not easy unless problem 
rigged up to use rational roots.   Must use 
algebraic algorithm or approximation 
technique like Newton’s Method. 

Roots x^5 -3x^4 -5x^3 +15x^2 +4x -12 

Now let’s use some calculus. 

1. Find the derivative, f’(x).  This is easy 

It is f’(x) = 5x4 – 12x3 – 15x2 +30x +4 

2. Now find the roots of f’(x) for critical 
points.  Often this is not easy.  Must use 
some algebraic algorithm or Newton’s 
Method. 

Note: the roots of the derivative are the 
possible stationary points. 



 

Roots of Derivative  

x^5 -3x^4 -5x^3 +15x^2 +4x -12 

3. Apply additional tests to determine 
maxima and minima.  Second derivative 
test, or direct test by evaluating f(x) on 
both sides of the critical point. 
 

4. Take the second derivative f”(x).  Easy 

f”(x) = 20x3 – 36x2 – 30x + 30 = 0 
  

5. Find the inflection points by finding the 
roots of the second derivative. Finding 
the roots of f”(x) may not be easy. 

Roots of Second Derivative 

x^5 -3x^4 -5x^3 +15x^2 +4x -12 

6. Then apply additional tests to determine 
if which roots are points of inflection. 

 

7. Find the Asymptotes.  Calculus does not 
apply here. 

Actually, it is even harder for many examples 
from STEM subjects to use calculus. 

 



 

T5 C5 Function Graph Term Sheet for Calculus 

Function f :    y = f(x),  x ε D ≤ R, y ε R  

D = Domain = Set of numbers f(x) is defined for. 

R = Real Numbers,   ≤ “is a subset of”,   ε “is contained in” 

Graph of f, Set of (x, f(x)) in plane, x ε D 

Terms describing f, at (a, f(a)) for any number a ε D 

Defined  f(a) is defined, a ε D 

Continuous        f(a) = Limit of f(x) as x  a 

Smooth  f’(a) exists, f’(a) = Limit [f(a+h)-f(a)]/h as h 0 

Increasing f’(a) > 0 

Decreasing f’(a) < 0 

Flat   f’(a) = 0 

Max (Local) f(a-h)<f(a)>f(a-h), Small h>0 

Min (Local) f(a-h)>f(a)<f(a-h), Small h>0 

Concave Up f’’(a) > 0  or  f’ is increasing at a 

Concave Down f’’(a) < 0  or  f’ is decreasing at a 

Inflection Point f’’(a) = 0 or f’ is going from + to – or visa versa 
usually, but not always. 

Vertical Asymptote (Usually a not in Domain) 

f(x)  ∞ or f(x)  -∞   as x  a from left or right 

Asymptote g(x) when x  ∞ or x  -∞ 

 f(x)  g(x) as x  ∞ or x  -∞ 

Difficult to graph and analyze a function with traditional calculus 
techniques and, in fact, impossible for many actual functions arising 
in STEM.  Always Easy with Wolfram Alpha. 



T5 C5 Application of Derivatives for Graphs Exercises 

Q1.  What is the value of f’(x) at a stationary (critical) point? 

Q2.  Stationary points can indicate on a graph the location of what? 

Q3.  What happens an inflection point (f’’(a)=0)? 

Q4.  When f’’(a) > 0 the graph is concave ______ at point a. 

Q5.  When f’’(a) < 0 the graph is concave ______ at point a. 

Q6.  What is an asymptote? 

Q7.  What is a root? 

Q8.  What is a domain? 

Q9.  What does the symbol “<” mean? 

Q10.  What does the symbol “∈” mean? 

 

  



 

A1.  0 

A2.  Local maxima, local minima, or inflection points 

A3.  Concavity switches signs 

A4.  Up 

A5.  Down 

A6.  An asymptote is where f(x) → a vertical line as x approaches a or 
another function g(x) as x → ∞. 

A7.  A root is where f(x) = 0 and crosses the x axis. 

A8.  A domain is a set of numbers f(x) is defined for. 

A9.  Is a subset of 

A10.  Is contained in 



 

Tier 5 Calculus Lesson 6 Notes:  Derivative Rules 

Let f(x) and g(x) be real valued functions where  

f’(x), g’(x), and f’(g(x)) all exist, then 

 

I. [cf(x)]’ = cf’(x) for any constant c. 
 

II. [(f(x) + g(x))]’ = f’(x) + g’(x) 
 

III. [f(x)g(x)]’ = f(x)g’(x) + f’(x)g(x)  Leibniz Rule 
 

IV. [(f(g(x))]’ = f’(g(x))g’(x)  Chain Rule 
 

V. [f(x)/g(x)]’ = [f’(x)g(x) – f(x)g’(x)]/[g(x)]2 
Quotient Rule 

 

VI. [1/f(x)]’ = -f’(x)/[f(x)]2  , f(x) ≠ 0  
 

VII. [f-1]’(x) = 1/f’(f-1(x))  Inverse Function Rule 
 

This is when y = f-1(x) IFF x = f(y)   

With these Rules one can find the derivative of most 
complicated functions which are built up from the common 
well known functions by simply applying the Rules 
sequentially in a “nested” way. 

No VII. Will be fully discussed in a T5 C11. 

These Rules can be demonstrated most easily with 
infinitesimal arguments, which can be made fully rigorous.  



 

This is how our ancestors originally discovered them and 
understood them. 

Here are a few demonstrations and you may do some for 
yourself, especially if you are contemplating a math major 
or becoming a mathematician. 

However, if you are a STE student, you might just want to 
remember the rules for test taking purposes and practice 
for the tests.   

Today,  you will use a tool like WA to actually find 
derivatives and their roots and graphs.   

Demo of I 

[cf(x)]’ = std[(cf(x+h)-cf(x))/h] 

= std[c(f(x+h) – f(x))/h] = cf’(x) 

Examples: Verify with WA 

[6sin(x)]’ = 6cos(x)        [7x4]’ = 28x3   [8.3ex]’ = 8.3ex 

Demo of II. 

[f(x) + g(x)]’ = std{([f(x+h) + g(x+h)) – (f(x)+g(x))]/h} 

= std{[f(x+h) –f(x)]/h + [g(x+h)-g(x)]/h} 

= std{[f(x+h) –f(x)]/h} + std{[g(x+h)-g(x)]/h} 

= f’(x) + g’(x) 

Examples:  Verify with WA 

[sin(x) + 5ex + 2x3]’ = cos(x) +5ex + 6x2 

[ln(x) – tan(x)]’ = 1/x – sec2(x) 



 

 

Demo of III.  The Liebniz Rule is a little counter intuitive.  
You might think [f(x)g(x)]’ =f’(x)g’(x).  But a quick 
example or two will show this is not true.  Here is the type 
of argument Leibniz, Newton, and Euler would have used.  
Only, they would have used ∆x instead of h, and assumed 
that ∆x behaved the way we say infinitesimals like h 
behave.  The modern arguments from non-standard 
analysis look a lot like Euler’s arguments. You try it first! 

[f(x)g(x)]’= std{[f(x+h)g(x+h) - f(x)g(x)]/h} = 

std{[f(x+h)g(x+h)-f(x+h)g(x)+f(x+h)g(x)- f(x)g(x)]/h} 

= std{[f(x+h)[g(x+h)-g(x)]]/h} +  

    std{[[f(x+h)- f(x)]g(x)]/h}   

= std{f(x+h)}Xstd{[g(x+h)-g(x)]/h} + 

    std{[f(x+h)- f(x)]/h}Xstd{g(x)}  

= f(x)g’(x) + f’(x)g(x)  

Examples: Verify with WA 

[sin(x)cos(x)] = sin(x)(-sin(x)) + cos(x)cos(x) = 

cos2(x) – sin2(x) = cos(2x) 

[x3ex]’ = x3ex + 3x2ex  = ex x2(x + 3) 

[sin(x)ln(x)]’ = sin(x)/x + cos(x)ln(x)  

 

 

 



 

The Chain Rule will be discussed in some more depth in T5 
C7.    

However, we will now apply it to Demo VI. 

   [1/f(x)]’ = -f’(x)/[f(x)]2  , f(x) ≠ 0  

Demo.    Define h(x) = 1/f(x) 

Suppose y = f(x), and g(y) = 1/y = y-1 

Then h(x) =g(f(x)) and  

h’(x) = g’(f(x))f’(x) by the Chain Rule. 

But, g’(y) = -1y-2 = -1/y2 and thus   

g’(f(x))=-1/[f(x)]2 

And it follows: h’(x) = -f’(x)/[f(x)]2  = [1/f(x)]’ 

Exercise:  You should now be able to derive V. using this 
result and the Leibniz Rule. 

Examples for V.   Verify with WA 

[sin(x)/cos(x)]’ = [cos(x)cos(x) – sin(x)(-sin(x)]/cos2(x) 

= [cos2(x) + sin2(x)]/cos2(x) = 1/ cos2(x) = sec2(x) 

So, if f(x) = tan(x), then f’(x) = sec2(x) 

 

[x3/sin(x)]’ = [3x2sin(x) – x3cos(x)]/sin2(x) 

=x2[3csc(x) – xcot(x)csc(x)] = x2[3 – xcot(x)]csc(x) 

 



 

Observation:   

Do you see how Algebra is so necessary in deriving these 
Rules.   

I don’t see any easy way to derive the Leibniz Rule or the 
Chain Rule from just Geometry.  If you do, please email me 
and let me know.   

Yet, ultimately these Derivative Rules are what we need to 
fully understand the geometry of functions.  

These are the tools our ancestors used for about 300 years 
which created modern science and technology.  

Ironic how Algebra and Geometry compliment and support 
each other, isn’t it?  

Calculus is just an extension of Algebra and Geometry 
which lets us understand the behavior many functions by 
understanding their rates of change. 

But, the best is yet to come.   

It turns out that derivatives are the key to understanding 
how functions can accumulate things, like the area under a 
graph. 

This will culminate in what is called the Fundamental 
Theorem of Calculus, which is arguably the foundation of 
all of our modern technology and science models.  



T5 C6 – Derivative Rules Homework 

For the following equations, which rule would you use to find the derivative, 
f’(x)?  Find the derivative for each function manually and verify with Wolfram 
Alpha. 

Q1.  f(x) = 3x4 – 6x3 + 8x2 +5x - 9 

Q2.  f(x) = ln(x)tan(x) 

Q3.  f(x) = 3sin(x) 

Q4.  f(x) = (3x3 + 5x2 – x +5)/(4x4 – 2x3) 

Q5.  f(x) = 3/cos(x) 

Q6.  f(x) = 3sin(2e2x) 

Q7.  f(x) = 4cos(x) 

Q8.  f(x) = ln(x)5e3x 

Q9.  f(x) = sin(x)/3x2 

Q10.  f(x) = 3cos(5x2)  

  



A1.  Rule II;  

A2.  Rule III, or Leibniz Rule;  

A3.  Rule 1;  

A4.  Rule V, or Quotient Rule; 

 

A5.  Rule VI;  

A6.  Rule IV, or Chain Rule;  

A7.  Rule I;  

A8.  Rule III, Leibniz Rule;  

A9.  Rule V, or Quotient Rule;  

A10.  Rule IV, or Chain Rule;  



 

Tier 5 Calculus Lesson 7 Notes:  Chain Rule 

Demo of IV. 

Assume Let f(x) and g(x) be functions and assume 
f’(x) and g’(x) and f’(g(x)) all exist. 

Then, [f(g(x)]’ = f’(g(x))g’(x) 

Note: g(x+h)-g(x) = k ≠ 0, or g(x+h) = g(x) +k   

where  h, k are non-zero infinitesimals since g’(x) 
exists and g is continuous at x 

Note: std[g(a+h)] = g(a) if g is continuous at x = a. 

Demo: 

[(f(g(x))]’ = std{[f(g(x+h))-f(g(x))]/h} = 

 

std{[f(g(x+h))-f(g(x))]/[g(x+h)-g(x)]x 

[g(x+h)-g(x)]/h} 

= std{[f(g(x)+k) – f(g(x))]/k} std{[g(x+h)-g(x)]/h}  

=f’(g(x))g’(x) 

 

One may apply the Chain Rule in a nested fashion. 

If H(x) = f(g(k(x)), then 

H’(x) = f’(g(k(x))g’(k(x))k’(x) 

 = k’(x)g’(k(x))f’(g(k(x)) 



 

Example: 

H(x) = [Cos(x2 +3x)]3 

H’(x) =3[    ]2[-(2x +3)Sin(   )] 

= 3[Cos(x2 +3x)]2X[-(2x +3)Sin(x2 +3x)] 

WA  Derivative (cos(x^2 +3x)^3   Watch the (  ) 

WA  Derivative cos(x^2 +3x)^3    

H(x) = cos[(x2 + 3x)3] 

H’(x) = -sin[(x2 + 3x)3]3(x2 + 3x)2(2x + 3) 

WA  Derivative cos((x^2 + 3x)^3) 

Exercise 

H(x) = [ln(sin(5x))]3 

H’(x) = 3[ln(sin(5x))]2X[1/sin(5x)]X[cos(5x)]X5 

= 15[ln(sin(5x))]2Xcot(5x) 

Derivative (ln(sin(5x)))^3 

Exercise 

f(x) = [SIN(x3) + e5x]1/2 

f’(x) =.5[SIN(x3) + ex]-1/2 [3x2COS(x3) + 5e5x] 

Exercise 

F(x) = e-x2       F’(x) = -2x e-x2        

WA  Derivative e^-(x^2) 



 

Observation:   

Do you see how Algebra is so necessary in deriving these 
Rules.   

I don’t see any easy way to derive the Leibniz Rule or the 
Chain Rule from just Geometry.  If you do, please email me 
and let me know.   

Yet, ultimately these Derivative Rules are what we need to 
fully understand the geometry of functions.  

These are the tools our ancestors used for about 300 years 
which created modern science and technology.  

Ironic how Algebra and Geometry compliment and support 
each other, isn’t it?  

Calculus is just an extension of Algebra and Geometry 
which lets us understand the behavior many functions by 
understanding their rates of change. 

But, the best is yet to come.   

It turns out that derivatives are the key to understanding 
how functions can accumulate things, like the area under a 
graph. 

This will culminate in what is called the Fundamental 
Theorem of Calculus, which is arguably the foundation of 
all of our modern technology and science models.  

 



T5 C7 Chain Rule Exercises 

For the following functions use the Chain Rule to find the derivative, and 
then use Wolfram Alpha to find the derivative of each function.  Remember, 
pay careful attention to where you place ( ), and make sure Wolfram Alpha 
is interpreting the function in the way you intended.   

Q1.  f(x) = cos(3x2 - 2x)

Q2.  f(x) = cos(( 2x - 3x

3 

2)3

Q3.  f(x) = cos(ln(3x

) 

2

Q4.  f(x) = cos(ln(3x)

)) 

2

Q5.  f(x) = cos(ln(3x))

) 

Q6.  f(x) = sin(3e

2 

5x^2

Q7.  f(x) = cos(4e

) 

sin(2x)

Q8.  f(x) = (sin(e

) 

x^2))

Q9.  f(x) = sin(4e

3 

cos(2x)

Q10.  f(x) = tan(ln(2x

) 

2

 

 - 6x)) 

  



A1.   

A2.   

A3.   

A4.   

A5.   

A6.   

A7.   

A8.   

A9.   

A10.   



 

Tier 5 Calculus Lesson 8 Notes:  Implicit Differentiation 

Suppose you have a relationship between two variables, x 
and y, expressed by an equation F(x,y)=0.  

Example F(x, y) = x3 – 6xy + y3 = 0  (Folium of Descartes) 

There will be a set of points in the x,y plane, that satisfies 
this equation, called its graph.  In general, this will not be 
the graph of a function, but rather the graphs of several 
functions “glued together”.  

Constructing this graph can be quite challenging without a 
graphing calculator or computer algebra system or 
Wolfram Alpha, WA. 

WA1  Plot x^3 - 6xy + y^3 = 0 from x = -4 to 4 

A point (a, b) on this graph may have a tangent line.   

Example, (2.7, 1.376) is such a point, i.e. F(2.7, 1.376) = 0 

Finding such a point in the first place is also sometimes 
very challenging.  Of course, WA makes it easy. 

WA2  Solve for y when x = 2.7, x^3 - 6xy + y^3 = 0 

 

 

 

 

 

 

 



 

There will be a tangent line to this graph passing through 
this point, (a, b). 

The problem is to find the equation of this tangent line.  

Of course, WA makes it easy. 

WA3  Tangent line at x = 2.7,  x^3 - 6xy + y^3 = 0 

OK. WA makes this very easy.   

We can even see that the slope of this tangent line is 1.294 
and its y intercept is -2.118 

We also saw two other points where x = 2.7, and their 
tangent lines too.  No extra charge. 

But, in the old days, and some current calculus books, 
there is no WA tool, so this is how they had to do it. 

The first approach, which is often impossible, is to find a 
function y = f(x) whose graph is the same as F(x,y)=0 at 
(a,b) = (a,f(a)).    

Then f’(a) will be the slope of the tangent line and 

y = f’(a)(x – a) + f(a) is the equation. 

Except for simple problems in calculus books like conic 
sections this can be quite difficult or impossible. 

Just look at this example: 

WA4   Solve for x, x^3 – 6ax +a^3 

WA treats x and y as variables and a as a constant 

So substitute y for x and x for a and you see the function. 

Clearly, not easy to derive. 



 

So there needed to be an easier way for our ancestors to 
find f’(a) without finding f(x) explicitly. 

Implicit Differentiation is what they used. 

Simply assume y is a function of x, and apply the rules of 
derivatives to F(x, y) = 0 and differentiate and solve for y’. 

Example:  

F(x, y) = x3 – 6xy + y3 = 0  (Folium of Descartes)  

3x2 – 6xy’ – 6y + 3y2y’= 0  (Liebniz and Chain Rules) 

Solve for y’ =  (6y - 3x2)/( 3y2 – 6x) = (x2 – 2y)/(2x – y2) 

We want f’(2.7) at the point (2.7, 1.376) 

f’(2.7) = y’(2.7) = (-13.614)/(-10.520) = 1.294 

So, equation of the tangent line is: 

y – 1.376 = 1.294(x – 2.7) or y = 1.294x – 2.118 

Yaa!  Check against WA3 answer. 

This was easy to do manually with a calculator. 

Of course WA would do if for us to. 

WA5  Derivative x^3 – 6xy + y^3 = 0 

And, then to actually calculate y’(2.7) 

WA6  (x^2 – 2y)/(2x – y^2) at x = 2.7 and y = 1.375 

But, with WA this would be the long way to do it. 

 

 



 

Example:  Derivative, y’, of y = 1/x  or xy – 1 = 0 

We learned earlier the answer is y’ = -1/x2 

Let’s do it another way with implicit derivatives. 

F(x,y) = xy -1 = 0   Assume y is function of x 

Thus, xy’ + y = 0 using the Liebniz Rule 

Thus, y’ = -y/x = -1/x2    

WA7  Derivative xy -1 = 0 

y’ = -y/x = -1/x2 since y = 1/x 

 

Example:  Find the tangent line to the ellipse whose 

equation is 3x2-3x +5xy + 8y2 = 15 at the point (2.3, .408) 

WA8  Plot 3x^2 -3x +5xy + 8y^2 – 15 = 0 

WA9  

Tangent line when x = 2.3, 3x^2 -3x +5xy + 8y^2 – 15 = 0 

 

Now you can do this with implicit differentiation the old 
way. 

 

 

 

 

 



 

Implicit differentiation is also very useful for finding the 
derivatives of inverse functions. 

 

Example: y = log(x)  or  x = ey 

1 = eyy’  or y’(x) = 1/ey = 1/x 

WA10  Derivative  x - e^y = 0 

y’ = e-y = 1/ey = 1/x 

 

Example  Derivative of y = sin-1(x) or x = sin(y) 

1 = cos(y)y’ 

y’(x) = 1/cos(y) = 1/[(1 – sin2(y)]1/2 = 1/(1 –x2)1/2 

WA11 Derivative x – sin(y) = 0 

But, of course, WA would just give it to us directly. 

WA12    derivative inverse sin(x) 

 

So, we see Implicit Differentiation was a very potent tool 
for our ancestors, and you may see some STEM topic 
treated with it.  So, you know what it is. 

However, you will probably solve any real problem you run 
into with WA since it is so much more powerful and easy to 
use. 

 



Tier 5 Calculus Lesson 8 Exercises:  Implicit Differentiation 

Q1.  What is implicit differentiation? 

Q2.  Why is implicit differentiation used? 

Q3.  What is a tangent line, and what does it represent? 

Q4.  If a function is represented by f(x), how is the slope represented at a 
point “a”? 

Q5.  Graph the function 2x^2 + 3xy + 3y^3 = 0, and solve for y when  
x=-0.2 

Q6.  Graph the function 2x^2 + 3x + 3xy + 3y^2 - 4y = 17, and solve for y 
when x=-5. 

Q7.  Graph the function 5x^2 - 2x - 4xy + 3y^2 + y = 8, and solve for y 
when x=1. 

Q8.  Find the tangent line when x = -0.2 for the function 2x^2 + 3xy + 
3y^3 = 0. 

Q9.  Find the tangent line when x = -5 for the function 2x^2 + 3x + 3xy + 
3y^2 - 4y = 17 

Q10.  Find the tangent line when x = 1 for the function 5x^2 - 2x - 4xy + 
3y^2 + y = 8. 

  



A1.  Assume y is a function of x, and apply the rules of derivatives to F(x, y) 
= 0 and differentiate with respect to x, and then solve for y’.  The 
answer will be a formula involving both x and y. 

A2. It may be difficult or impossible to express y as a function of x, and thus 
an explicit derivative cannot be found. 

A3.  

A4.  f’(a) 

A tangent line is a straight line that touches a function at only one 
point.  The tangent line represents the instantaneous rate of change of 
the function at that one point. 

A5.  

       

y = -0.503006, 0.150315, 0.352691 

  



A6.   

    

 y = 1.15973, 5.17360 

A7.   

    

 y = -0.884437, 1.88444 

  



A8.   

  

 tangent at (x, y) = (-0.2, -0.503006) :  y = 1.37677 x-0.227653 

 tangent at (x, y) = (-0.2, 0.150315) :  y = -0.880011 x-0.0256874 

 tangent at (x, y) = (-0.2, 0.352691) :  y = 0.25334-0.496754 x 

A9.  

   



  

A10.   

  

  



 

Tier 5 Calculus Lesson 9 Notes:  Related Rates 

If f(t) is a function of time, t, we say f’(t) is its “rate of 
change with respect to time”.  And, at t = a we say f’(a) is 
its rate of change at time t = a.  If f(t) is measured in 
distance unit ft and time t is in seconds, we say f’(t) is 
measured in ft/sec.  Or, it could be m/hr if f(t) is 
measured in miles, m, and time, t, in hours. 

Suppose we have two functions f(t) and g(t) and their 
derivatives f’(t) and g’(t), and suppose that we have a 
linear equation with these four functions.  For example 
f’(t)f(t) = - g(t)g’(t). 

Then if we know three of them, we can easily find the 
fourth one.  Why? 

Remember, if you have four unknowns U,X,Y,Z related by a 
linear equation, and if you know any three of them, then 
you can solve for the fourth one easily. 

For example.  Suppose you know g(t) = 6ft, g’(t) = 
2ft/sec, and f(t) = 8ft  then   

f’(t) = - g(t)g’(t)/f(t) = -6ftx2ft’sec/8ft = -3/2ft/sec 

Notice, In this example you don’t know what t is actually 
equal to. 

So, the challenge is always to find a linear equation which 
relates the four functions, f(t), f’(t), g(t), and g’(t). 

This can be accomplished in various ways depending on 
the specific problem being addressed.  You will have to use 
the geometry of the situation to relate f(t) and g(t) 
usually. 

 



 

Example 1: A ladder is leaning against a wall.  The ladder 
is 10 ft long.  The base is being moved away from the wall 
at the rate of 2ft/sec.  How fast will the top of the ladder 
be moving down the wall when the base is 6 ft from the 
wall? 

Draw a picture and set up the functions and the equation 
that relates them.  x(t) is the distance of the base from the 
wall, and y(t) is the height of the ladder up the wall, both 
at time t.   At any time t, by the P.T. we know an equation 
that relates them 

x(t)2 + y(t)2 = 102   

and  x’(t) = 2ft/sec and x(t) = 6ft. 

Now, y(t) = 8ft by the P.T. and we want to know y’(t). 

Note: This is not a linear equation, and x’(t) and y’(t) are 
not in this equation.  So, what to do? 

Apply implicit differentiation to this equation w.r.t. t 

x(t)2 + y(t)2 = 102   

2x(t)x’(t) + 2y(t)y’(t) = 0 and solve for y’(t) 

Thus, y’(t)= -x(t)x’(t)/y(t) ft/sec [ftX(ft/sec)/ft = ft/sec] 

y’(t) = -6X2/8 ft/sec = -3/2 ft/sec = -1.5 ft/sec  

Note we did not have to calculate t. 

Question?  The base is moving out at a constant rate of 
2ft/sec.  What about the top moving down?   

Is it moving down at a constant rate?   y’(t) ? 



 

Note:  y(t) = [1 – x2(t)]1/2 by the P.T.  So, as x(t) gets 

larger y(t) gets smaller. 

Does it go faster or slower as you pull the ladder away 
from the wall i.e. is y’(t) increasing or decreasing? 

Examine   y’(t)= -x(t)x’(t)/y(t) ft/sec 

As x(t) increases, y(t) decreases, so y’(t) increases 

Example 2.  In the above situation how fast will the top of 
the ladder be moving down the wall when the base is 7 ft 
from the wall? 

x(t) = 7, and thus, y(t) = (100 – 49)1/2 = 7.14 

y’(t) = -7X2/7.14 ft/sec = 1.96 ft/sec > 1.5 ft/sec 

So, it’s going faster. 

9 ft from the wall the top is going down -9x2/4.36 ft/sec = 

4.1 ft/sec ,  so faster yet. Note:  4.36 = (100 - 81)1/2 

Example 3.  If the ladder is coming down the wall at the 
rate of -4 ft/sec when y(t) = 3 ft, how fast is the base 
moving away from the wall? 

Now, we need to find x’(t). 

We know x(t) = (100 – 9)1/2 =9.54 ft by the geometry.   

when and y(t) = 3 ft and we know y’(t) = -4ft/sec 

Solve y’(t)= -x(t)x’(t)/y(t) for x’(t) 

x’(t) = -y’(t)y(t)/x(t) [(ft/sec)ft/ft) = ft/sec ] 

x’(t) = -(-4ft/sec)X3ft/9.54ft = 1.3 ft/sec    

Always check the units to catch a mistake in the equation. 



 

There are many ways one might relate the two functions.  
It all depends on the situation.  You need to come up with 
a relationship between f(t) and g(t), and then differentiate 
to create a linear relationship between all four functions, 
f(t), g(t), f’(t), and g’(t).  Then you need to find the values 
of three of them and calculate the value of the fourth 
unknown one. 

Sometimes f(t) and g(t) are related via a third function h 
where f(t) = h(g(t)). 

Now you use the Chain Rule: 

f’(t) = h’(g(t))g’(t). 

So you need to know g(t), h’(g(t)), and g’(t) to find f’(t), 
or f’(t), h’(g(t)) and g’(t) to find g(t), etc. [see end of next 
lesson, C10, for further explanation.] 

 

Example 4:  A sphere has radius r and volume V, and the 

sphere is inflating at the rate of 100 in3/sec and we want 

to know how fast the radius is increasing when the radius 
equals 25 in. 

So, let r(t) and V(t) be the volume and radius at time, t. 

We are given V’(t) = 100 in3/sec and r(t) = 25 in. 

What is r’(t)? 

We know V(t) = 4/3∏r(t)3 by the volume formula. 

So, V’(t) = 4∏r(t)2r’(t)  or  r’(t) = V’(t)/ 4∏r(t)2 

So, r’(t) = (100 in3/sec)/4∏252in2 = 1/25∏ in/sec 



 

Note: We did not have to calculate the time t. 

Example 5. Suppose the radius of a sphere is increasing at 
the rate of 2 in/sec when it is equal to 12 in.  How fast will 
the volume of the sphere be increasing? 

We know r’(t) = 2 in/sec and r(t) = 12. 

We know V(t) = 4/3∏r(t)3 by the volume formula. 

So, V’(t) = 4∏r(t)2r’(t)   

So, V’(t) = 4∏X122(in2)X2in/sec = 1152∏ in3/sec 

 

Another type of rate problem. 

Suppose you know r’(t) and r(0) and V(0), and you wanted 
to know V(5). 

Then you would need to figure out r(5) since 

V(5) = 4/3∏r(5)3 

This is a solvable problem, but not with what you have 
learned so far in this course. 

It will be solvable when you learn the extension of 
Calculus called Differential Equations. 



Tier 5 Calculus Lesson 9 Exercises:  Related Rates 

Q1.  What are related rates? 

Q2.  If you are given two functions, f(t) and g(t), and their derivatives, f’(t) 
and g’(t), and the following linear equation represents the relationship 
between them: f(t)f’(t) = g(t)g’(t), find f(t) if f’(t)=15 in/sec, g(t)=180 
in, and g’(t)=40 in/sec. 

Q3.  If you are given two functions, f(t) and g(t), and their derivatives, f’(t) 
and g’(t), and the following linear equation represents the relationship 
between them: f(t)/f’(t) = g(t)/g’(t), find f(t) if f’(t)=65 miles/hr, 
g(t)=300 miles, and g’(t)=75 miles/hr. 

Q4.  You are traveling at 70 miles/hr and realize that the rest of your trip 
will take you 3.75hr, but you need to reach your destination in 3.5hr.  
What does your rate of speed (mi/hr) need to be to reach your 
destination on time?   

Q5.  A cube has a length s (lengths on all sides are equal) and volume V, 
and the cube is increasing in volume at the rate of 96 in3

Q6.  A sphere has radius r and volume V, and the radius of the sphere is 
increasing at the rate of 5 in/sec.  We want to know how fast the 
volume of the sphere is increasing when the radius equals 15 in. 

/sec.  We want 
to know how fast the length is increasing when the length equals 4 in. 

Q7.  A sphere has radius r and surface area A, and the radius of the sphere 
is increasing at the rate of 5 in/sec.  We want to know how fast the 
surface area of the sphere is increasing when the radius equals 15 in. 

Q8.  Two people are standing 20 ft. apart.  One of them walks north at a 
rate of 3 ft/sec.  At what rate is the distance between them changing 
when the person walking is 8 ft. from her starting point? 

Q9.  A tank of water in the shape of an upside-down cone is leaking water at 
a rate of 3ft3

Q10.  A cylindrical tank has a radius of 4 ft.  If water is being added to the 
tank with a garden hose at a rate of 0.75 ft

/hour.  At what rate is the radius of the surface of the 
water changing when the radius r = 8ft and the height h of the water is 
15 ft? 

3

  

/min, what is the rate of 
change of the height of the water?  



A1.  Related rates involve finding the rate at which one quantity changes 
when the rate of change for another quantity is known and the two rates 
are in some way related. 

A2.  480 in 

A3.  260 miles 

A4.  75 miles/hr 

A5.  V(t) = s

 V’(t) = 3s

3 
2

 96 = 3(4)

s’(t) 
 2

 s’(t) = 2 in/sec 

s’(t) 

A6.  V(t) = 4/3πr(t)

 V’(t) = 4πr

3 
2

 V’(t) = 4π(15)

r’(t) 
2 

 V’(t) = 4500π, or 14137.17, in

(5) 
3

A7.  A(t) = 4πr

/sec 

 A’(t) = 8πrr’(t) 

2 

 A’(t) = 8π(15)(5) 

 A’(t) = 600π, or 1884.96, in2

A8.  x

/sec 
2 + y(t)2 = h(t)

 20

2 
2 + 82 = h(t)

 h(t)

2 
2 = 464 ft

 h(t) = 21.54ft 

2 

 202 + y(t)2 = h(t)

 0 + 2y(t)y’(t) = 2h(t)h’(t) 

2 

 y(t)y’(t) = h(t)h’(t) 

 (8)(3) = (21.54) h’(t) 

 h’(t) =1.114 ft/sec 



A9.  V(t) = 1/3πr(t)2h(t)  and we are given r(t) = 8ft and V’(t) = 3ft3

V’(t) = 1/3π[2r(t)r’(t)h(t) + r(t)

/hr and 
h(t) = 15ft and we want to know r’(t) 

2

Oops.  We have two unknowns, r’(t) and h’(t) 

h’(t)]  Note: Use Leibniz Rule and 
Chain Rule 

So, let’s start over and eliminate h’(t) by using what we know about the 
geometry. 

V(t) = 1/3πr(t)2

We know h(t)/r(t) = 15/8 

h(t) 

Therefore  h(t) = (15/8)r(t), and thus 

V(t) = (5/8) πr3

V(t) = (1/3)πr(t)

(t) since 

2h(t) = (1/3)π(15/8)r(t)3  = (5/8)πr(t)3

V’(t) = (5/8)π3r(t)

   

2r’(t) and we are given V’(t) = 3ft3

3 = (15/8) π8

/hr and r(t) = 8ft 

2

r’(t) = 3/120π = .00796 ft/hr 

r’(t) = 120πr’(t) 

 

A10.  V(t) = πr2

 V’(t) = πr

h 
2

 0.75 = π(4

h’(t) 
2

 h’(t) = 0.046875/π, or 0.01492, ft/min 

)h’(t) 



T5 C10a  Inverse Functions Basics 

Lesson T5 C10 starts out with the following. 

Let f(x) be a function which is 1 to 1 on a domain D. 

That is: if f(a) = f(b) , then a = b 

One horizontal line will only intercept the graph of f at only 
one point. 

Define a function f-1  whose domain is the Range of f as 

follows:  y = f-1

f

(x) if and only if x = f(y) 

-1

Note: the -1 is NOT an exponent, just a symbol 

 is called the inverse function of f 

The graph of f-1 is the reflection of the graph of f in the 45o

This is because (a,b) is the reflection of (b,a) in this line. 

 
line, graph of y = x. 

In this lesson T5 C10a let us elaborate on this.  Inverse 
functions are very important, and sometimes looking at 
them geometrically is very helpful. 

First, let’s consider the fact that (a,b) and (b,a) are 
reflections in the 45o

     y = f(x) = x 

 line which is the graph of the line 

 

 

 

 



Second, let’s be sure we understand what it means for a 
function y = f(x) to be 1 to 1 on a Domain D. 

 

 

 

 

For example, y = f(x) = x2

 

 is not 1 to 1 over the domain of 
all the real numbers.  However, it is 1 to 1 over the domain 
of the non-negative real numbers, and also over the 
domain of non-positive real numbers or of any subdomains 
of these two domains. 

 

 

 

 

 

Example, y = sin(x) is 1 to 1 over the domain  

-Pi/2<x<Pi/2  or many other similar subdomains. 

 

 

 

 



Now let’s look at some specific examples of inverse 
functions.  The simplest are linear functions whose graphs 
are straight lines.  Consider y = f(x) = mx +b,   where m is 
the slope and b is the y-intercept.  What is its inverse 
function? 

By definition:  y = f-1

Solving for y, y = (1/m)x – b/m  = f

(x) means x = f(y) or x = my +b 

-1

Example, if f(x) = 5x+3 , then f

(x) 

-1

WA1  inverse function 5x + 3 

(x) = (1/5)x – 3/5 

Example, if f(x) = 2x-1, then f-1

WA2  inverse function 2x – 1 

(x) = (1/2)x + ½ 

 

What if m = 1/m,  then m = +1 or -1 

If m = +1,  the line is parallel to the 45o

 

 line and its 
inverse is just a parallel line on the other side. 

 

 

If m = -1, the line is perpendicular to the 45o

 

 line and is its 
own inverse 

 

 



 

If m = 0, 1/m = ∞ and we have a horizontal line and 
vertical line as inverses. 

 

 

 

 

In general, if the graph of a function is symmetrical about 
the 45o

Example, y = f(x) = 1/x is its own inverse. 

 line, then it is its own inverse. 

WA3  inverse function 1/x 

 

 

 

Some non linear examples: 

y = f(x) = x2 for x ≥ 0  Clearly, y = f-1(x) = x1/2   

x = y

Why? 

2 and thus y = x

WA 4 inverse function x^2 

1/2 

 

 

 

 



 

What about y = f(x) = ex

In this case the inverse function is so important it has 
been given a name,   ln(x) or log(x) to the base e. 

 ? 

So y = log(x)  iff x = ey

That is why we say log(x) is an exponent. 

  [iff means “if and only if”] 

WA 5 inverse function e^x 

 

 

What about y = f(x) = sin(x) ? 

This is very important inverse function, but it only is give 
the name  sin-1

Of course we must restrict the domain as indicated above 
to –Pi/2 < x < Pi/2 or something similar.  The domain of 
the arcsin(x) is -1< x< 1 which was, of course, the range 
of sin(x).  The range of Arcsin(x) is –Pi/2 < x < Pi/2 

(x) or  Arcsin(x) 

WA 6  Plot sin(x), inverse sin(x) 

 

WA 7  Plot sin(x), inverse sin(x) from x =-1 to 1 

 

You can do similar things with any function to find its 
inverse, and plot it. 

 



Now, let’s address the question of what would be the 
derivative of f-1

I will do this graphically here. 

(x) from a geometric perspective.  In C10 
we will approach it using tools from calculus. 

Remember that the inverse function of a straight line 

f(x) =mx + b is f-1

Also, remember the derivative of any function g(x) is just 
the slope of the tangent line at (x, g(x)) or g’(x) 

(x) = (x – b)/m 

(f-1)’(x) = 1/f’(f-1

Let’s see this geometrically here, and in C10 we will derive 
this using calculus. 

(x)) for any x. 

 



 

T5 C10a Inverse Functions Basics Exercises 

 

Q1.  A function f(x) will see its inverse function as a reflection about which line? 

Q2.  If f(x) is a function which is 1 to 1 on Domain D, what does that mean? 

Q3.  What is the inverse function of y = 6x + 5?  Graph both in Wolfram Alpha. 

Q4.  What is the inverse function of y = 3x – 4?  Graph both in Wolfram Alpha. 

Q5.  What is the inverse function of y = 2x2

Q6.  In Q5, name two domains to make the function 1 to 1. 

 - 3?  Graph both in Wolfram Alpha. 

Q7.  What is the inverse function of y = x3

Q8.  In Q7, does the graph of the function f(x) need to be divided into domains to 
make the function 1 to 1?  If so, name a domain. 

?  Graph both in Wolfram Alpha. 

Q9.  What is the inverse function of y = cos(x)?  Graph both in Wolfram Alpha. 

Q10.  In Q9, does the graph of the function f(x) need to be divided into domains 
to make the function 1 to 1?  If so, name a domain. 

  



A1.  The 45° line 

A2.  One horizontal line will only intercept the graph of f(x) at only one point.  For 
each value of x in the Domain D, there will be only one answer f(x). 

A3.  x = y/6 – 5/6  

 

A4.  x = y/3 + 4/3 

   

  



A5.  x = (y/2 + 3/2)1/2

 

  

A6.  Non-negative real numbers, non-positive real numbers 

A7.  x = (y)1/3 

 

  

  



A8.  No, at no point can a horizontal line be drawn through the graph of the 
function f(x) and cross through multiple points. 

A9.  y = cos-1

 

(x)  

But this answer is not quite correct.  The problem is that the domain of the 
function, Cos(x) is 0 to π and its range is -1 to 1, so the domain of the inverse 
Cos is -1 to 1.  The best we can do is to include both domains in the smallest 
possible interval which is -1 to  π.  The corrected graph: 



  

Plotting also y = x helps to see the mirror effect. 

WA plot cos(x), inverse cos(x), x 

  

A10.  Yes; 0 to π 



T5 C10 Inverse Functions 

Let f(x) be a function which is 1 to 1 on a domain D. 

That is: if f(a) = f(b) , then a = b 

One horizontal line will only intercept the graph of f at one 
one point. 

Define a function f-1  whose domain is the Range of f as 

follows:  y = f-1

f

(x) if and only if x = f(y) 

-1

Note: the -1 is NOT an exponent, just a symbol 

 is called the inverse function of f 

The graph of f-1 is the reflection of the graph of f in the 45o

This is because (a,b) is the reflection of (b,a) in this line. 

 
line, graph of y = x. 

Now the question is: “What is the derivative of f-1

y = f

 ? 

-1

Implicitly  Differentiate x = f(y) to get 

(x) is equivalent to x = f(y) 

1 = f’(y)y’ = f’(f-1(x))(f-1

So,    (f

)’(x) 

-1)’(x) = 1/ f’(f-1

 

(x)) 

 

 

 



Example 1: If f(x) = x2, then y = f-1(x) = x

Why?   y = f

1/2 

-1(x) means x = f(y) = y2 or y = x

So   y = f

1/2   

-1(x) = x

Now, f’(x) = 2x so according to our formula: 

1/2   

(f-1)’(x) = 1/f’(f-1(x)) = 1/2 x1/2  = (1/2)x

Of course, we already know y’ = (1/2)x

-1/2 

-1/2

 

  from long ago. 

Now from first principles, what is the derivative of f-1  or  

y’ = (f-1

Here again:  y = (f

)’(x)   ? 

-1)(x)  means x = f(y) = y

So, 1 = 2yy’ and, thus, y’ = 1/2y 

2    

(f-1)’(x) = y’ = 1/2y = 1/2x1/2 = (1/2)x

 

-1/2 

 

 

 

 

 

 

 



Example 2:  y = cos-1

and [cos(x)]’ = -sin(x) 

(x) is inverse of cos(x)  

So  [cos-1(x)]’ = y’ = 1/-sin(cos-1

Now consider the definitions of sin and cos in trig 

(x)) 

sin2(a) + cos2(a) = 1, so sin(a) = [1 – cos2(a)]

So,  let a = cos

1/2 

-1

sin(cos

(x)) and we get  

-1(x)) = [1 – cos2(cos-1(x)))]1/2 = [1 – x2]

since by definition  cos(cos

1/2 

-1

So y’ = (cos

(x)) = x 

-1)’(x) = -1/[1 – x2]

Verify with WA 

1/2 

WA1   derivative inverse cos(x)  

 

Example 3.  y = tan-1(x)  and [tan(x)]’ = sec2

[tan

(x) 

-1(x)]’  = 1/ sec2(tan-1(x)] = 1/(1 + x2

Since 1 + tan

) 

2(a) = sec2

WA derivative inverse tan(x) 

(a)  

  

 

 

 



Example 4 

y = sec-1

[Sec(x)]’ = [1/cos(x)]’ = -(-sin(x))/cos

(x)      x = sec(y) 

2

y’ = 1/tan(sec

(x) = 
tan(x)sec(x) 

-1(x))sec(sec-1

tan

(x))      

2(a) = sec2(a) - 1  or tan(a) = [sec2(a) - 1]

y’ = 1/(x

1/2 

2 – 1)1/2x  = 1/(1 – 1/x2)1/2x

WA derivative inverse sec(x) 

2 

 

Example 5 

Related Rates Example revisited. 

“Now you use the Chain Rule: 

f’(t) = h’(g(t))g’(t). 

So you need to know g(t), h’(g(t)), and g’(t) to find f’(t), 
or f’(t), h’(g(t)) and g’(t) to find g(t), etc.” 

In this last case, how will you find g(t)? 

Clearly you will have to use the inverse of h’ to do so. 

g(t) = (h’)-1(g(t))  



T5 C10 Inverse Functions Exercises 

Note:  This will be a challenging set of problems.  It took me several 
hours to fully understand them and “master” Wolfram Alpha.  As you 
will see starting in Q3 , it is best to use WA in two steps.  But, you 
also have two manual ways of doing the problems.  First, you find  

f-1

Q1.  If a function is defined as f(x), what is f

(x) and differentiate it directly.  Second, you can use the formula 
from Q2. 

-1

Q2.  What is the general form for the derivative of the inverse function  

(x)? 

(f-1

Q3.  Given the function y = f(x) = x

)’(x) if the function is f(x)? 

3, what is the inverse function f-1(x), and 
what is the derivative of the inverse function (f-1

Q4.  Given the function y = f(x) = 4x

)’?  

2, what is the inverse function f-1(x), 
and what is the derivative of the inverse function (f-1

Q5.  Given the function y = f(x) = 8x

)’? 

3, what is the inverse function f-1(x), 
and what is the derivative of the inverse function (f-1

Q6.  Given the function y = f(x) = sin(x), use Wolfram Alpha to find the 

derivative of the inverse function (f

)’? 

-1)’.    Note: sin-1

Q7.  Given the function y = f(x) = sin

(x) = arcsin(x) by 
definition 

2(x), use Wolfram Alpha to find the 
derivative of the inverse function (f-1

Q8.  Given the function y = f(x) = sin(x

)’. 

2), use Wolfram Alpha to find the 
derivative of the inverse function (f-1

Q9.  Given the function y = f(x) = sin(cos(x)) , use Wolfram Alpha to find 
the derivative of the inverse function (f

)’. 

-1

Q10.  Given the function y = f(x) = cos(sin(x)) , use Wolfram Alpha to find 
the derivative of the inverse function (f

)’. 

-1

Q11.  Given the function y = f(x) = e

)’. 

sin(x) , use Wolfram Alpha to find the 

derivative of the inverse function (f-1

Q12.  Given the function y = f(x) = cos(log(x)) , use Wolfram Alpha to find 
the derivative of the inverse function (f

)’. 

-1)’. 



A1.  The inverse function of f(x) 

A2.  (f-1)’(x) = 1/ f’(f-1

A3. y =  f(x) = x

(x)) 

3,  f’(x) = y’ = 3x

y = f

2 

-1(x) <---> x = f(y) < --- >  x = y3 < --- >  y = x1/3  = f-1

Direct   y’ = 1/3x

(x) 

Formula    (f

-2/3 

-1)’ (x) = 1/f’(f-1(x)) = 1/3( x1/3 )2 = 1/3x2/3 = (1/3)x

WA  inverse x^3     Answer: x

-2/3 

WA  derivative x^(1/3) 

1/3 

 

NOTE:  Usually it is best to use WA in two steps.  First find the inverse 
function and second evaluate the derivative of the inverse function. 

A4.  (f-1)’(x)  = (1/4)x

A5.  (f

-1/2 

-1)’(x)  = (1/6)x

A6.  (f

-1/3 

-1)’(x)  = 1/(1 – x2)

A7.  WA inverse function sin^2(x)  

1/2 

(f-1)(x) = ±sin-1(x1/2

WA derivative sin^(-1)(x^(1/2)) 

) 

 

A8.  WA inverse function sin(x^2) 

(f-1)(x) = ±(sin-1(x))

WA derivative (sin^(-1)(x))^(1/2) 

1/2 

  

  



A9.  WA inverse function sin(cos(x)) 

(f-1)(x) = ±(cos-1(sin-1

WA derivative (cos^(-1)(sin^(-1)(x)) 

(x)) 

 

A10.  WA inverse function cos(sin(x))  

(f-1)(x) = ±(sin-1(cos-1

WA derivative sin^(-1)(cos^(-1)(x)) 

(x)) 

 

A11.  WA inverse function e^(sin(x))  

(f-1)(x) = sin-1

WA derivative sin^(-1)(log(x)) 

(log(x)) 

 

A12. WA inverse function cos(log(x)) 

(f-1)(x) = ±earccos(x) Reminder: arccos = cos

WA derivative e^(cos^(-1)(x)) 

-1 

 



 

Tier 5 Calculus Lesson 11 Notes:  Series Expansions 

Polynomials are particularly easy to deal with using 
calculus since they are just a sum of powers of x. 

P(x) = anxn + an-1xn-1 + . . . + a2x
2 + a1x + a0 

P’(x) =  nanxn-1 + (n-1)an-1xn-2 + . . . + 2a2x + a1 

So, if you can approximate a function f(x) with a 
polynomial P(x), then you can easily differentiate 
it, and more importantly as we will learn, integrate 
it. 

We can also write a polynomial in reverse order 

P(x) = a0 + a1x + a2x
2 + . . . + an-1xn-1 + anxn 

One would think that the higher the order, n, of the 
polynomial the better approximation of f(x) it 
would be. 

Suppose you let the terms go on forever? 

 P(x) = a0 + a1x + a2x
2 + . . . + an-1xn-1 + anxn + . . . 

This we call an “Infinite Series”. 

And, then, maybe it would be a perfect 
representation of a function f(x). 

In fact, this is the case.  And, starting in the 17th 
century our ancestors used the infinite series 
representation of functions to do their analysis. 



 

There are serious questions of when this is 
“legitimate” in the sense that it does not lead to 
contradictions or nonsense, which it sometimes 
does if one is not careful, whatever that means. 

In the 19th century our ancestors figured this all 
out and made the use of infinite series rigorous just 
as they made all of mathematics rigorous.  If you 
are a mathematics major you will learn all about 
this. 

In the meantime, STEM students may just trust 
that what we tell them will work if they follow our 
“rules”. 

The problem, of course, is to find the proper infinite 
series to represent a function f(x). 

It turns out that this is very easy with derivatives. 

Newton used a generalization of the Binomial 
Theorem with non integer exponents to great 
advantage.  But, this is now superseded by 
something we call Taylor Infinite Series 
representation of a function, f(x). 

And, this then extends into complex numbers, and 
is indeed how we extend the definition of such 
functions as sin(x) and cos(x) into the complex 
number domain.  Recall our treatment in Tier 4. 

eix = Cos(x) + iSin(x) 



 

Let f(x) be a function with derivatives of all orders. 

f(n)(x) means the nth order derivative of f(x) 

Suppose that f(x) is equal to an infinite series,  
“centered at a” 

f(x) = a0+a1(x–a) + a2(x–a)2 + . . . + an-1(x–a)n-1 + 

an(x–a)n + . . . 

What would the ai equal? 

  a0 = f(a) by substituting x = a into both sides. 

Now, differentiate both sides 

f’(x) = a1+ 2a2(x–a)1 + . . . +(n-1)an-1(x–a)n-2 + 

nan(x–a)n-1 + . . . 

and   a1= f’(a) = f(1)(x) 

What do you suppose a2 will equal? 

f(2)(x) = 2a2 + 3x2a3(x–a)1  . . . +                          

(n-2)(n-1)an-1(x–a)n-3 + (n-1)nan(x–a)n-2 + . . . 

2a2 = f(2)(a) or  a2 = f(2)(a)/2! 

Differentiate both sides again and get 

a3 = f(3)(a)/3! 

 



 

In general,  an = f(n)(a)/n! 

So we write  f(x) = SUM [f(n)(a)/n!](x – a)n 

      ∑ is used for SUM and it is understood that n 

ranges from 0 to ∞ 

However, when one actually calculates with such a 
series, one always truncates and only uses as high 
a power of n as needed for the approximation. 

f(x) = a0+a1(x–a) + a2(x–a)2 + . . . + an-1(x–a)n-1 + 

an(x–a)n + O(f(n+1)(a) (x–a)n+1/(n+1)!) 

O(f(n+1)(a) (x–a)n+1/(n+1)!) is the estimate of the 
largest error that will happen with this 
approximation. 

In the old days, we worked pretty hard to find the 
Taylor expansion of various functions, f(x). 

When a = 0 we call this a Maclaurin series. 

 

 

 

 

 

 



 

Now WA makes this all very easy. 

WA series sin(x) 

WA series cos(x) 

WA series e^x 

WA series sin(x) at x = pi/4 

WA series e^ix 

WA series sin(x) at x = 0 order 20 

WA  e^ix 

 

 

 

  



Tier 5 Calculus Lesson 11 Exercises:  Series Expansions 

Q1.  What is the general form for the Taylor series? 

 
Q2.  What is understood to be the range for the Taylor series? 

 
Q3.  The Taylor series centers around “a”.  To turn the Taylor series into the 

Maclaurin series, what must “a” equal? 

Use Wolfram Alpha to find the Taylor series expansion for the following 
equations.  Also find the first listed series representations. 

 
Q4.  f(x) = tan(x) 

 
Q5.  f(x) = sin(x)/cos(x) 

 
Q6.  f(x) = sin(ex

 

) 

Q7.  f(x) = tan(x) at x=0 order 12 

 
Q8.  f(x) = sin(x)/cos(x) order 10 

 
Q9.  f(x) = sin(ex

 

) order 15 

Q10.  sin(x)/cos(x) at x = pi/4 

  



A1.  f(x) = SUM [f(n)(a)/n!](x – a)

A2.  0 to ∞ 

n 

A3.  0 

A4. 

    
  
A5.  

   
  
A6.   

  

  
A7.   

  
A8.  

   

  



A9.  

 

  

A10.   

  

  

 



 

Tier 5 Calculus Lesson 12 Notes: 
Final Thoughts on Derivatives 

The first obvious application of derivative is 
when one wants to know the rate of change 
of a function, i.e. the slope of the tangent line 
on each point on the graph of the function.   

This comes up a lot in virtually all STEM 
subjects and, indeed, in any subject where 
one is performing a quantitative analysis of 
something. 

The function is created as a model for some 
phenomenon one is studying.   

Then, the rate of change is calculated using 
differential calculus and the derivative. 

The second application of derivatives which 
was vitally important in the old days was in 
graphing functions.   

As we learned, a graph is the quickest way to 
really understand the behavior of a function, 
and consequently, the phenomenon the 
function is modeling. 



 

Historically, graphing functions was very 
tedious and time consuming and consumed 
much of the differential calculus training.   

For example, just to find the maxima and 
minima one had to find the zeros of the 
derivative, which itself could be very difficult, 
and then apply other tests to determine 
which stationary (critical) points were 
maxima or minima or just points of inflection. 

Derivatives can be used to determine when 
the function is increasing and decreasing.  

Derivatives also can be used to determine 
concavity and points of inflection. 

!!! Today, tools like Wolfram Alpha 
obviate the need for these classical 
manual procedures.   

One can now graph functions virtually 
instantaneously including functions 
whose graphs were essentially 
intractable historically.   



 

A significant percentage of the manual 
graphing techniques taught in a classical 
calculus course are now effectively obsolete.   

No modern employer would pay you to apply 
these techniques.  They were great for our 
ancestors before the modern tools, but like 
many of the classical tools, no longer useful.   

The third, and more important, application of 
derivatives is in calculating integrals which 
we will learn in the second half of this course.   

Anti-Derivatives are extremely important in 
many science and engineering applications 
involving integrals.   

As you will learn, anti-derivatives are what 
we use in integral calculus thanks to the 
Fundamental Theorem of Calculus. 

A fourth application of derivatives is in the 
representation of functions as infinite series 
known as Taylor series.   

This in turn is what makes Complex Numbers 
and Complex Analysis work. 

 



 

Most importantly, Derivatives are utilized in 
what are called differential equations which 
are the workhorses of modern science and 
engineering models.  Tier 6. 

Indeed, if you go into any STEM subject or 
any other subject utilizing quantitative 
analysis you will utilize differential equations. 

Fortunately today, tools like Wolfram Alpha 
make the calculations with derivatives 
automatic and very easy so one can focus on 
their meaning and applications. 

Historically, one often had to avoid certain 
calculus problems simply because we did not 
have adequate tools to solve them.   

Indeed, many of the problems in calculus and 
science textbooks are rigged so we can solve 
them with the classical manual tools.   

Today, with tools like WA we are no longer 
restricted.  Now we can solve virtually any 
calculus problem that comes up in any 
application.   Quickly and easily. 

 



 

Wolfram Alpha does for calculus what the 
scientific calculator does for arithmetic and 
what the spreadsheet does for modern 
accounting and data analysis. 

As a STEM professional you will be finding 
applications of derivatives the rest of your 
life.  There are an unlimited number of 
examples throughout all STEM subjects. 

It is imperative you master a tool such as 
Wolfram Alpha. 

This will become even more important and 
significant as you learn Integral Calculus 

 

I estimate Wolfram Alpha eliminates as much 
as 75% of the required work to master and 
implement calculus compared to the classical 
approach. 

That is why this entire calculus program can 
be comfortably completed in about one 
semester. 
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Tier 5 Calculus Lesson 12 Exercises:  Final Thoughts on Derivatives 

Q1.  What is the purpose of a function? 

Q2.  What is the first use of derivatives? 

Q3.  What is the second use of derivatives? 

Q4.  What parts of a graph do derivatives allow you to discover? 

Q5.  What does a graph allow us to see/do?  

Q6.  What program allows us to solve practically any calculus problem we 
can come up with? 

  



A1.  To create a model of the phenomenon you are studying 

A2.  Calculate the rate of change 

A3.  Graph functions 

A4.  Is the function increasing/decreasing, concavity, points of inflection, 
and maxima/minima 

A5.  Understand the behavior of a function and the phenomenon the function 
is modeling  

A6.  Wolfram Alpha 


	Tier5_C1_Notes
	Tier5_C1_Exercises
	Tier5_C2_Notes
	Tier5_C2_Exercises
	Tier5_C2a_Notes
	Tier5_C2A_Exercises
	Tier5_C3_Notes
	Tier5_C3_Exercises
	Tier5_C4_Notes
	Tier5_C4_Exercises
	Tier5_C5_Notes
	Tier5_C5_Exercises
	Tier5_C6_Notes
	Tier5_C6_Exercises
	Tier5_C7_Notes
	Tier5_C7_Exercises
	Tier5_C8_Notes
	Tier5_C8_Exercises
	Tier5_C9_Notes
	Tier5_C9_Exercises
	Tier5_C10a_Notes
	Tier5_C10a_Exercises
	Tier5_C10_Notes
	Tier5_C10_Exercises
	Tier5_C11_Notes
	Tier5_C11_Exercises
	Tier5_C12_Notes
	Tier5_C12_Exercises

