S1 Units Conversions

Suppose you have two Units of Measurement
U_{1} and U_{2} and you wish to convert from one unit to the other, for example cm and inches

For example, you want to convert $\mathbf{2 3 . 4} \mathbf{~ c m}$ to inches
First, you must determine the conversion number.
You may look this up in some type of unit conversion table, or you can go to www.WolframAlpha.com and get the answer or find the conversion number.

WA1 Convert 1 cm to inches
Answer: 1 cm = . 3937 inches
Now, you have 23.4 cm = X inches and you want X.
Multiply both sides by 23.4 and get
23.4 cm = 23.4x. 3937 inches = 9.2 inches

Of course, we could have gotten this directly from www.wolframalpha.com

WA2 Convert 23.4 cm to inches
Answer: 9.213

Suppose you wanted to convert 15.7 inches to $\mathbf{c m}$?
$1 \mathrm{~cm}=.3937$ inches same as $1 / .3937 \mathrm{~cm}=1 \mathrm{inch}$ Or 1 inch $=2.54 \mathrm{~cm} \quad$ since $1 / .3937=2.54$

Then, 15.7 inches $=15.7 \times 2.54 \mathrm{~cm}=39.88 \mathrm{~cm}$
Of course,
WA3 convert 1 inch to cm
Answer: 2.54
WA4 convert 15.7 inches to cm
Answer: 39.88

This type of process applies to any type of conversion of units. Of course, the units must be measuring the same thing like length or weight.

Example 1: convert $\mathbf{1 8 . 3}$ grams to ounces
First you must find a conversion factor for grams to ounces: $1 \mathrm{gm}=.0353 \mathrm{oz}$ you find somewhere.

Then, $18.3 \mathrm{gm}=.0353 \times 18.3 \mathrm{oz}=.646 \mathrm{oz}$
WA5 1 gram to ounce Ans: . 03527
WA6 $\mathbf{1 8 . 3}$ gram to ounce Ans: . 6455

The same process applies to any type of unit conversion.

For example, square feet to square meters
1 sq meter = 10.76 square feet
Thus, 1 square foot $=1 / 10.76 \mathrm{sq} \mathrm{m}=.093 \mathrm{~m}^{2}$
Example 2: 4.7 sq m are how many sq ft?
Ans: $\quad 4.7 \times 10.76 \mathrm{ft}^{\mathbf{2}}=50.57 \mathrm{ft}^{2}$
WA7 $\quad 4.7$ sq m to sq ft Ans: 50.6
To get more accuracy
WA8 4.70 sq m to sq ft Ans: $\mathbf{5 0 . 5 9}$
WA9 1 square meter to square feet Ans: 10.76
Example 3: 12.3 Kilograms is how many pounds?
WA10 12.3 kilograms to pounds
Ans: 27.12 lb = 27 lb 1.90z
Example: 3.4 cubic meters is how many cubic yards
$1 \mathrm{~m}=1.094 \mathrm{yd}$
$1 \mathrm{~m}^{3}=1.094^{3} \mathrm{yd}^{3}=1.309 \mathrm{yd}^{3}$
So $3.4 \mathrm{cu} \mathrm{m}=3.4 \times 1.309 \mathrm{cu} \mathrm{yd}=4.45 \mathrm{cu} \mathbf{y d}$
WA11 3.4 cubic meter to cubic yard
Ans: 3.45 cu yd

In general, if you have two units which measure the same quantity, U_{1} and U_{2} and you wish to convert from one unit to the other, then
If you have access to www.wolframalpha.com you simply enter the command
convert $N \quad U_{1}$ to U_{2}
where N is the amount of the quantity you have expressed in U_{1} and you will get the amount expressed in \mathbf{U}_{2}
If you don't have access to Wolfram Alpha, then you must find the conversion factor C where
$\mathbf{1} \mathbf{U}_{1}=\mathbf{C} \mathbf{U}_{\mathbf{2}}$
Multiply both sides by \mathbf{N} to obtain the answer
$\mathrm{N}_{1}=\mathbf{C x N} \mathrm{U}_{2}$
Example: you know 1 mile $=1.609$ kilometers
60 miles $=1.609 \times 60 \mathrm{~km}=96.54 \mathrm{~km}$
So, you can see for example that
100 km/ hr is about 60 m/ hr.

S1 Units Conversion Exercises

Q1. Given the conversion factor $1 \mathrm{ft}=12 \mathrm{in}$, how many inches are in 1.5 ft ?
Q2. Given the conversion factor $1 \mathrm{ft}=12 \mathrm{in}$, how many feet are in 14 in ?
Q3. Given the conversion factor $1 \mathrm{~m}=39.37 \mathrm{in}$, how many inches are in 2.8 m ?
Q4. Given the conversion factor $1 \mathrm{~m}=39.37 \mathrm{in}$, how many meters are in 76 in ?
Q5. Given the conversion factor $1 \mathrm{in}^{2}=6.452 \mathrm{~cm}^{2}$, how many cm^{2} are on an $81 / 2$ in $\times 11$ in sheet of paper?

Q6. Given the conversion factor $1 \mathrm{in}^{2}=6.452 \mathrm{~cm}^{2}$, how many in ${ }^{2}$ are in 100 cm^{2} ?

Q7. Given the conversion factor $1 \mathrm{gal}=3.785 \mathrm{I}$, how many liters are in 19 gal ?
Q8. Given the conversion factor $1 \mathrm{~km}^{2}=0.3861 \mathrm{mi}^{2}$, how many mi^{2} are in 15 km^{2} ?

Q9. Given the conversion factor $1 \mathrm{gal}=3.785 \mathrm{I}$, how many gallons are in 2 I ?
Q10. If I want to pour a concrete house slab that is 52 feet long by 28 feet wide by 4 inches deep, how would I determine how many cubic yards of concrete would be needed?

A1. $1 \mathrm{ft}=12 \mathrm{in}$ (You will also see this written as $12 \mathrm{in} / \mathrm{ft}$.)
$1.5 \mathrm{ft}=\mathrm{X}$ in
$(12 \mathrm{in} / \mathrm{ft}) *(1.5 \mathrm{ft})=18 \mathrm{in}$
or
WA convert 1.5 ft to in
18 in
A2. $1 \mathrm{ft}=12 \mathrm{in}$
$1 / 12 \mathrm{ft}=12 / 12 \mathrm{in}$
$0.0833 \mathrm{ft}=1 \mathrm{in}$ (You will also see this written as $0.0833 \mathrm{ft} / \mathrm{in}$.)
14 in $=X$ feet
$(0.0833 \mathrm{ft} / \mathrm{in}) *(14 \mathrm{in})=1.167 \mathrm{ft}$
or
WA convert 14 in to ft
1.167 ft

A3. $2.8 \mathrm{~m}=\mathrm{X}$ in
$(39.37 \mathrm{in} / \mathrm{m}) *(2.8 \mathrm{~m})=110.24 \mathrm{in}$
A4. $1 \mathrm{~m}=39.37 \mathrm{in}$
$1 / 39.37 \mathrm{~m}=39.37 / 39.37 \mathrm{in}$
$0.0254 \mathrm{~m}=1 \mathrm{in}$ (You will also see this written as $0.0254 \mathrm{~m} / \mathrm{in}$.)
76 in $=X$ m
$(0.0254 \mathrm{~m} / \mathrm{in})^{*}(76 \mathrm{in})=1.930 \mathrm{~m}$
or
WA convert 76 in to m
1.93 m

A5. $(81 / 2 \mathrm{in}) *(11 \mathrm{in})=93.5 \mathrm{in}^{2}$
$\left(6.452 \mathrm{~cm}^{2} / \mathrm{in}^{2}\right) *\left(93.5 \mathrm{in}^{2}\right)=603.262 \mathrm{~cm}^{2}$
or
WA convert 93.5 inches^2 to $\mathrm{cm}^{\wedge} 2$
$603.2 \mathrm{~cm}^{2}$
or
WA convert (8.5 inches) ${ }^{*}(11 \mathrm{in})$ to $\mathrm{cm} \wedge 2$
$603 \mathrm{~cm}^{2}$
Note: The answers are actually the same. The slight differences occur during rounding.

A6. $1 \mathrm{in}^{2}=6.452 \mathrm{~cm}^{2}$
$1 / 6.452 \mathrm{in}^{2}=6.452 / 6.452 \mathrm{~cm}^{2}$
$0.155 \mathrm{in}^{2}=1 \mathrm{~cm}^{2}$ (You will also see this written as $0.155 \mathrm{in}^{2} / \mathrm{cm}^{2}$.)
$100 \mathrm{~cm}^{2}=\mathrm{X} \mathrm{in}^{2}$
$\left(0.155 \mathrm{in}^{2} / \mathrm{cm}^{2}\right)^{*}\left(100 \mathrm{~cm}^{2}\right)=15.5 \mathrm{in}^{2}$
or
WA convert $100 \mathrm{~cm}^{\wedge} 2$ to in^2
$15.5 \mathrm{in}^{2}$
A7. $19 \mathrm{gal}=\mathrm{XI}$
$(3.785 \mathrm{l} / \mathrm{gal}) *(19 \mathrm{gal})=71.915 \mathrm{I}$
or
WA convert 19 gal to I
71.92 L

A8. $15 \mathrm{~km}^{2}=\mathrm{X} \mathrm{mi}^{2}$
$\left(0.3861 \mathrm{mi}^{2} / \mathrm{km} 2\right)\left(15 \mathrm{~km}^{2}\right)=5.7915 \mathrm{mi}^{2}$
or
WA convert $15 \mathrm{~km}^{\wedge} 2$ to $\mathrm{mi}^{\wedge} 2$
$5.792 \mathrm{mi}^{2}$
A9. $1 \mathrm{gal}=3.785 \mathrm{I}$
$1 / 3.785 \mathrm{gal}=3.785 / 3.785 \mathrm{I}$
$0.2642 \mathrm{gal}=1 \mathrm{I}$ (You will also see this written as $0.2642 \mathrm{gal} / \mathrm{l}$.
$2 \mathrm{I}=\mathrm{X}$ gal
$(0.2642 \mathrm{gal} / \mathrm{I}) *(2 \mathrm{I})=0.5284 \mathrm{I}$
or
WA convert 21 to gal
0.5283 ।

A10. $27 \mathrm{ft}^{3}=1 \mathrm{yd}^{3}$
$27 / 27 \mathrm{ft}^{3}=1 / 27 \mathrm{yd}^{3}$
$1 \mathrm{ft}^{3}=0.0370 \mathrm{yd}^{3}$
$1 \mathrm{ft}=12 \mathrm{in}$
$1 \mathrm{in}=0.0833 \mathrm{ft}$. (See A1 for math conversion.)
First, convert in to ft.
$4 \mathrm{in}=\mathrm{Xft}$
$(0.0833 \mathrm{ft} / \mathrm{in})(4 \mathrm{in})=0.3332 \mathrm{ft}$
Next, calculate number of ft^{3}.
$(52 \mathrm{ft})(28 \mathrm{ft})(0.3332 \mathrm{ft})=485.1392 \mathrm{ft}^{3}$

Finally, convert ft^{3} to yd^{3}.

$$
\begin{aligned}
& 485.1392 \mathrm{ft}^{3}=\mathrm{X} \mathrm{yd}^{3} \\
& \left(0.0370 \mathrm{yd}^{3} / \mathrm{ft}^{3}\right)\left(485.1392 \mathrm{ft}^{3}\right)=17.968 \mathrm{yd}^{3}
\end{aligned}
$$

S2 DMS Degrees - Minutes - Seconds

There are 360° or Degrees in one revolution or circle.
In the DD system we express degrees with decimal notation. 37.45 degrees means 37 and 45/ 100 degrees

In the DMS system, 1 degree $=\mathbf{6 0}$ minutes, or $1^{\circ}=60^{\prime}$
And 1 minute $=60$ seconds, or $1^{\prime}=60^{\prime \prime}$
So, $1^{\prime}=(1 / 60)^{\circ}$ and $1^{\prime \prime}=(1 / 60)^{\prime}=(1 / 3600)^{\circ}$
We can express degrees in either DD or DMS format and convert degrees from DD to DMS and DMS to DD using the TI 30Xa calculator.
$D M S \rightarrow$ DD \quad is $2^{\text {nd }}+$
$D D \rightarrow$ DMS is $2^{\text {nd }}=$
Example:
$6.5^{\circ}=6^{\circ} 30^{\prime} 00^{\prime \prime} 00$
$6.55^{\circ}=6^{\circ} 33^{\prime} 00^{\prime \prime} 00$
$6.57^{\circ}=6^{\circ} 34{ }^{\prime} 12{ }^{\prime \prime} 00$
$6.573^{\circ}=6^{\circ} 34^{\prime} 22^{\prime \prime} 80$ this means 22.80"
$127.875^{\circ}=127^{\circ} 52^{\prime} 30^{\prime \prime}$
$57.382^{\circ}=57^{\circ} 22^{\prime} 55^{\prime \prime} 2$ this means 55.2"

To apply the DMS \rightarrow DD conversion you must enter the angle in the following format
$6^{\circ} 34^{\prime} 22^{\prime \prime} 80$ is entered $6.3422802^{\text {nd }}+6.573^{\circ}$ $26^{\circ} 4^{\prime} \mathbf{2 "}^{\prime \prime} 50$ is entered $26.040250 \quad 2^{\text {nd }}+$ Answer: 26.06736 ${ }^{\circ}$

Now enter 26.06736° and get $26^{\circ} 04^{\prime} 02 \prime 5$

It is possible to do these conversions manually with formulas, but it is best to do it with a calculator

S2 DMS Degrees - Minutes - Seconds Exercises

Convert the following decimal degree (DD) numbers to degrees-minutesseconds (DMS).

Q1. 87.625
Q2. 137.6489
Q3. 65.475698
Q4. 19.01325
Q5. 45.4557

Convert the following degrees-minutes-seconds (DMS) to decimal degree (DD) numbers.

Q6. $66^{\circ} 18^{\prime} 12^{\prime \prime} 0$
Q7. $78^{\circ} 45^{\prime} 06^{\prime \prime} 4$
Q8. $180^{\circ} 04^{\prime} 07^{\prime \prime}$
Q9. $97^{\circ} 09^{\prime} 45^{\prime \prime} 7$
Q10. $54^{\circ} 577^{\prime 2} 7^{4}$

A1. $87^{\circ} 37^{\prime} 30^{\prime \prime} 00$
A2. $137^{\circ} 38^{\prime} 56^{\prime \prime}$
A3. $65^{\circ} 28^{\prime} 32^{\prime \prime} 5$
A4. $19^{\circ} 00^{\prime} 47^{\prime \prime} 7$
A5. $45^{\circ} 27^{\prime} 20^{\prime \prime} 5$
A6. 66.30333333
A7. 78.75177778
Note: If you get an answer of 78.75167778, what you did is enter into your calculator "78.450604" instead of " 78.45064 " before you hit the DMS \rightarrow DD key. Anything after the " symbol, in this case 06 " 4 , should be treated as 6.4 seconds, therefore, entering a 0 before the 4 would be incorrect.

A8. 180.0686111
A9. 97.162269444
Note: If you get an answer of 97.16251944, what you did is enter into your calculator "97.094507" instead of "97.09457" before you hit the DMS \rightarrow DD key.

A10. 54.95761111
Note: If you get an answer of 54.95751111, what you did is enter into your calculator "54.572704" instead of " 54.57274 " before you hit the DMS \rightarrow DD key.

S3 y^{x} Exponents

$y^{\mathbf{x}}$ means y times itself x times
y is called the base,
x is called the exponent
Examples:
$2^{3}=8 ; 3^{2}=9 ; 5^{4}=625 ; 10^{5}=100,000$
The y^{x} key is the east way to calculate this.
Clear the calculator
Enter 2 and press the y^{x} key
Enter 3 and press the = key Ans: 8
Do all of the above.
y can be any positive number
x can be any number
$x \sqrt{ } y$ means the $x^{\text {th }}$ root of y
same as $y^{(1 / x)} \quad[x \sqrt{ } y]^{x}=y={ }^{x} \sqrt{ }\left(y^{x}\right)$

$$
\sqrt[3]{ } 8=2=8^{1 / 3}
$$

$1.7^{2.7}=4.19$
$2^{10}=1024$ Kilo ${ }^{10} \sqrt{ } 1024=2=1024^{1 / 10}$

\[

\]

Compound interest at 5\% for 40 years
$1.05^{40}=7.04$
$1.06^{40}=10.3$
$\mathbf{1 . 2 5}{ }^{25}=\mathbf{2 6 5} \quad$ Kmart growth rate $25 \% / y r$
$1.56^{25}=67,315$ Walmart growth rate 56\% / yr
$(1+1 / 1,000,000)^{1,000,000}=2.718=e$

Negative exponents

$$
\begin{aligned}
& y^{-x}=1 / y^{x} \\
& 9^{-2}=1 / 9^{2}=1 / 81=.012345679 \\
& 9^{-1 / 2}=1 / 3=1 / 9^{1 / 2} \\
& 5.7^{-1.3}=.104 \\
& .58^{-3.2}=5.715 \\
& -3^{.5}=\text { Error }
\end{aligned}
$$

Exponents are very common in many
situations. The calculator makes it very easy to deal with them. Just follow the rules.

Of course, Wolfram Alpha also will deal with them very easily.

S3 Exponents Exercises

Use your calculator to solve the following exercises.
Q1. $4^{7}=$
Q2. $10^{9}=$
Q3. $4.2^{3.6}=$
Q4. ${ }^{8} \sqrt{ } 256=$
Q5. ${ }^{6} \sqrt{ } 1,000,000=$
Q6. ${ }^{3.2} \sqrt{ } 8.3=A 1.16,384$
Q7. $7^{-2}=$
Q8. $56^{-2.4}=$
Q9. $0.47^{-3.1}=$
Q10. If production increases at a rate of $6.5 \% /$ year, what is your production after 15 years?

Q11. If production increases at a rate of $7.5 \% /$ year, what is your production after 15 years?

Q12. For the following exponents, match them with their name

1. $10^{3}=1,000$
a. Giga (Digital)
2. $10^{6}=1,000,000$
b. Tera (Digital)
3. $10^{9}=1,000,000,000$
c. Giga (Metric)
4. $10^{12}=1,000,000,000,000$
d. Tera (Metric)
5. $2^{10}=1,024$
e. Mega (Metric)
6. $2^{20}=1,048,576$
f. Kilo (Metric)
7. $2^{30}=1,073,741,824$
g. Mega (Digital)
8. $2^{40}=1,099,511,627,776$
h. Kilo (Digital)

A1. 16,384
A2. 1,000,000,000
A3. 175.266
A4. 2
A5. 10
A6. 1.937
A7. 0.020
A8. 0.0000637
A9. 10.387
A10. $1.065^{15}=2.572$
A11. $1.075^{15}=2.959$
A12. 1f, 2e, 3c, 4d, 5h, 6g, 7a, 8b

S4 Density = Weight/ Volume
How much does 55 gallons of water weigh (in lbs)?
How much does 55 gallons of gasoline weigh?
How much does 55 gallons of cement weigh?
How much does 55 gallons of mulch weigh?

Weight is measured in units such as:
Grams (gm), pound (lb), ounce (oz),
kilograms (kg), stone (st), etc

Volume is measured in such units as:
gallons(gal), quarts (qt), fluid ounces (floz),
liters (Itr), cubic inches (cu in or in ${ }^{3}$),
cubic feet ($\mathbf{c u ~ f t ~ o r ~} \mathrm{ft}^{\mathbf{3}}$) or in general
cubic \mathbf{U} (cu \mathbf{U} or $\mathbf{U}^{\mathbf{3}}$) where \mathbf{U} is a linear length, etc.
Suppose 1 gallon of water weighs 8.345 lbs
Then, 55 gallons would weigh $55 \times 8.345=459$ lbs

How do you find out what 1 gallon of water weighs?

Well, you could weigh a quart of water and multiply by 4 since 4 quarts equals one gallon.

Or, you could weigh 1 oz of water and multiply by 128 since one gallon is 128 oz.

Or, you could weigh a container full of water whose volume is $\mathbf{1 2} \mathbf{~ o z}$ and then multiply by 128/ 12

Of course, you must subtract the weight of the empty container!

The Density of water is what you are computing.
Density $=$ Mass/ Volume $=$ Weight/ Volume
$D=W / V$ or $W=D V$ or $V=W / D$
So, if you know any two of these, then you always can calculate the third.

The units must always match up.
If \mathbf{W} is $\mathbf{l b}$ and V is $\mathbf{f t}^{\mathbf{3}}$, the D must be $\mathrm{lb} / \mathrm{ft}^{\mathbf{3}}$
D could be lb/ gal, or oz/ quart, or gm/ liter, etc.
Above we determined a W and V in an experiment and calculated D, and then used this D to calculate the W when we were given the V.

What you always want to do first is learn the D for a substance.

For example, D for gasoline is $\mathbf{6 . 0 6} \mathbf{~ l b / g a l}$
So, 55 gallons of gasoline would weigh
$55 \times 6.06=333 \mathrm{lbs} \quad \mathrm{VxD}=\mathbf{W}$ galx(lb/gal) = lb
BUT, how do we know D for gasoline.

1. We could look it up in some table of density's.
2. We could find out on the Internet. My favorite is www.WolframAlpha.com
3. We could do the experiment by weighing a known volume, usually pretty small.

WA1 density of gasoline in lb/ gal
Ans: 6.06 lb/ gal
But, suppose you did the experiment and found that $\mathbf{2 4 . 7} \mathbf{~ c u}$ in of gasoline weighed $10.4 \mathbf{~ o z ?}$
10.4/24.7 = . $42 \mathrm{oz} / \mathrm{in}^{3}$ convert this to lb/ gal

WA2 convert . $42 \mathrm{oz} / \mathrm{in}$ ^3 to lb/ gal
Ans: 6.06 lb/ gal as it should be.

Note: Do you think I actually did this experiment? Of course not, I just used WA backwards

WA3 convert $6.06 \mathrm{lb} / \mathrm{gal}$ to oz/ in^3
Ans: .42 oz/ in ${ }^{3}$
But, in many cases, you won't be able to find the Density of a substance in any handbook, or even on Wolfram Alpha. So then, you simply must do the experiment with a convenient container.

1. Compute its volume.
2. Fill it up with the substance.
3. Calculate the Density of this substance.

Then you can find either V or W if you know the other one.

For example, how many cubic yards will one ton of insulation material fill up?

Suppose we do the experiment and find that the density of some insulation material is $2.5 \mathrm{lbs} /$ gal.
(I have no idea what it really would be.)
Then, WA tells us the density would be:
WA4 convert $2.5 \mathrm{lbs} /$ gal to lbs/ $\mathrm{yd}^{\wedge} 3$
Ans: 505 lbs/ cu yd
So, $V=W / D$ yields 2000/505 $=4$ yd 3 as answer.

How much does 55 gallons of cement weigh?
WA5 density of cement in lb/ gal
Ans: $\mathbf{1 6 . 8} \mathbf{~ l b /}$ gal
So 55 gallons weighs $55 \times 16.8=924$ lbs
If in doubt, actually do the experiment and weigh a small amount and then do the calculations.

How much does 55 gallons of mulch weigh?
WA6 density of mulch in lb/ gal
WA doesn't know. You will probably just have to do the experiment and calculate the density.

So now, you can do a bunch of problems.
Sometimes, WA will give you the density.
Sometimes you will have to find it by experiment.
Use some handy container whose volume you know or can compute. And, fill it up and weight it. Subtract the empty container weight.

Then, use WA to convert it to the Units you want.

S4 Density = Weight/ Volume Exercises

Use your calculator to solve the following exercises.
Q1. 1 quart of seawater (salt water) weighs 2.138 lb . What is the density of seawater (lb/gal)?

Q2. The density of propane is $0.0156843 \mathrm{lb} /$ gal. A residential tank holds 250 gal. of propane. What is the weight (lb) of the propane in that tank?

Q3. The density of gold is $11.2 \mathrm{oz} / \mathrm{in}^{3}$. What is the volume (in ${ }^{3}$) of 16 oz . (or 1 lb) of gold?

Q4. A quart of whole milk weighs 2.3 lb . What is the density (gal) of whole milk in lb/gal?

Q5. An adult is recommended to limit their salt intake to no more than 2300 mg per day. If the density of salt is $10,600 \mathrm{mg} / \mathrm{tsp}$ (teaspoons), what is the volume of salt (tsp) an adult should not exceed per day?

Q6. A grass catcher for a mower holds $4.4 \mathrm{ft}^{3}$ of grass. If the density of grass is $17.4 \mathrm{lb} / \mathrm{ft}^{3}$, what is the weight (lb) of the grass in the catcher?

Q7. You buy a pool which is 24 ft in diameter and fills with water to 4 ft deep. The density of water is $8.345 \mathrm{lb} /$ gal. How much does the water in your pool weigh (lb)? Useful information: $1 \mathrm{ft}^{3}=7.481$ gal.

Q8. A ream (500 sheets) of 8.5 in $\times 11$ in standard office paper is 2 in thick, and weighs 5 lb . What is the density of the paper ($\mathrm{oz} / \mathrm{in}^{3}$)? Useful information: $1 \mathrm{lb}=16 \mathrm{oz}$.

Q9. If 1 lb of feathers has a density of $0.0025 \mathrm{~g} / \mathrm{cm}^{3}$, what is the volume of those feathers $\left(\mathrm{cm}^{3}\right.$ and $\left.\mathrm{ft}^{3}\right)$? Useful information: $1 \mathrm{lb}=453.6 \mathrm{~g}$; $1 \mathrm{ft}^{3}$ $=28,317 \mathrm{~cm}^{3}$

Q10. A bag of concrete mix weighs 80 lb . and has a dry volume of $0.53 \mathrm{ft}^{3}$. If 4 liters (L) of water are added to the mix, what is the final weight (lbs.) of the concrete? Also, what is the final volume (ft^{3}) that the bag will fill once mixed with water? Use these numbers to calculate the density ($\mathrm{lb} / \mathrm{ft}^{3}$). Useful information: Density of water: $1000 \mathrm{~g} / \mathrm{L}$ (grams/liter); $1 \mathrm{lb}=453.6 \mathrm{~g} ; 1 \mathrm{~L}=0.03531 \mathrm{ft}^{3}$

A1. $D=W / V$

$$
\begin{aligned}
& D=2.138 \mathrm{lb} / 1 \text { quart } \\
& D=(2.138 \mathrm{lb} / \text { quart }) \times(4 \mathrm{gal} / \text { quart }) \\
& \mathrm{D}=8.552 \mathrm{lb} / \mathrm{gal}
\end{aligned}
$$

A2. $W=V D$

$$
\begin{aligned}
& \mathrm{W}=(250 \mathrm{gal}) \times(0.0156843 \mathrm{lb} / \mathrm{gal} \\
& \mathrm{W}=3.92 \mathrm{lb}
\end{aligned}
$$

A3. $V=W / D$

$$
\begin{aligned}
& \mathrm{V}=(16 \mathrm{oz}) /\left(11.2 \mathrm{oz} / \mathrm{in}^{3}\right) \\
& \mathrm{V}=1.43 \mathrm{in}^{3}
\end{aligned}
$$

A4. $D=W / V$

$$
\begin{aligned}
& \mathrm{D}=2.13 \mathrm{lb} / 1 \text { quart } \\
& \mathrm{D}=(2.3 \mathrm{lb} / \text { quart }) \times(4 \mathrm{gal} / \text { quart }) \\
& \mathrm{D}=9.2 \mathrm{lb} / \mathrm{gal}
\end{aligned}
$$

A5. $V=W / D$

$$
\begin{aligned}
& V=(2300 \mathrm{mg}) /(10,600 \mathrm{mg} / \mathrm{tsp}) \\
& \mathrm{V}=0.217 \mathrm{tsp}
\end{aligned}
$$

A6. $W=V D$

$$
\begin{aligned}
& \mathrm{W}=\left(4.4 \mathrm{ft}^{3}\right) \times\left(17.4 \mathrm{lb} / \mathrm{ft}^{3}\right) \\
& \mathrm{W}=76.6 \mathrm{lb}
\end{aligned}
$$

A7. $W=V D$

$$
\begin{aligned}
& \mathrm{V}=\text { Height } \times \text { Area } \\
& \mathrm{V}={\text { Height } \times \pi \text { Radius }^{2} \text { or Height } \times \pi \times(1 / 2 \text { Diameter })^{2}}_{\mathrm{V}=(4 \mathrm{ft}) \times\left(\pi \times(1 / 2 \times 24 \mathrm{ft})^{2}\right)}^{\mathrm{V}=1809.557 \mathrm{ft}^{3}} \\
& \mathrm{~V}=\left(1809.557 \mathrm{ft}^{3}\right) \times\left(7.481 \mathrm{gal} / \mathrm{ft}^{3}\right) \\
& \mathrm{V}=13,537.299 \mathrm{gal} \\
& \mathrm{~W}=(13537.299 \mathrm{gal}) \times(8.354 \mathrm{lb} / \mathrm{gal}) \\
& \mathrm{W}=113,091 \mathrm{lb}
\end{aligned}
$$

A8. $D=W / V$

$$
\begin{aligned}
& V=(8.5 \mathrm{in}) \times(11 \mathrm{in}) \times(2 \mathrm{in}) \\
& V=187 \mathrm{in}^{3} \\
& \mathrm{~W}=(5 \mathrm{lb}) \times(16 \mathrm{oz} / \mathrm{lb}) \\
& \mathrm{W}=80 \mathrm{oz} \\
& D=(80 \mathrm{oz}) /\left(187 \mathrm{in}^{3}\right) \\
& D=0.4 \mathrm{oz} / \mathrm{in}^{3}
\end{aligned}
$$

A9. $V=W / D$

$$
\begin{aligned}
& \left.V=(453.6 \mathrm{~g}) / 0.0025 \mathrm{~g} / \mathrm{cm}^{3}\right) \\
& \mathrm{V}=181,440 \mathrm{~cm}^{3} \\
& \mathrm{~V}=\left(181,440 \mathrm{~cm}^{3}\right)\left(1 / 28,317 \mathrm{ft} 3 / \mathrm{cm}^{3}\right) \\
& \mathrm{V}=6.4 \mathrm{ft}^{3}
\end{aligned}
$$

A10. Weight:

Concrete mix: 80 lb (given)

Water:

$$
(4 \mathrm{~L}) \times(1000 \mathrm{~g} / \mathrm{L}) \times(1 / 453.6 \mathrm{lb} / \mathrm{g})=8.82 \mathrm{lb}
$$

Total:

$$
80 \mathrm{lb}+8.82 \mathrm{lb}=88.82 \mathrm{lb}
$$

Volume:
Concrete mix: $0.53 \mathrm{ft}^{3}$ (given)
Water:

$$
(4 \mathrm{~L}) \times\left(0.03531 \mathrm{ft}^{3} / \mathrm{L}\right)=0.14 \mathrm{ft}^{3}
$$

Total:

$$
0.53 \mathrm{ft}^{3}+0.14 \mathrm{ft}^{3}=0.67 \mathrm{ft}^{3}
$$

Density:

$$
\begin{aligned}
& \mathrm{D}=\mathrm{W} / \mathrm{V} \\
& \mathrm{D}=88.82 \mathrm{lb} / 0.67 \mathrm{ft}^{3} \\
& \mathrm{D}=132.57 \mathrm{lb} / \mathrm{ft}^{3}
\end{aligned}
$$

S5 FLO SCI ENG Formats

Numbers can be expressed in three different formats.

FLO or Floating Point is the format you are familiar with. 64327.59 is an example.

Of course you know this is the same as:
$6 \times 10^{4}+4 \times 10^{3}+3 \times 10^{2}+2 \times 10^{1}+7 \times 10^{0}+5 \times 10^{-1}+9 \times 10^{-2}$
And, $10^{0}=1,10^{-n}=1 / 10^{n}$
Now we can also express this number is what is called SCI or scientific format
$64327.59=6.432759 \times 10^{4}$
Or in ENG or engineering format
$64327.59=64.32759 \times 10^{3}$
In the ENG format you will always have 10 to an exponent that is a multiple of 3 . You'll see why this is when we study Prefixes in another lesson/

SCI and ENG notations are sometimes used in documentation and you can always convert from one to the other with our calculator or to FLO if the number is not too large.

However, for very large or very small numbers SCI or ENG formats are necessary.

Frankly, if you are going to be working with very large or very small numbers you will probably be using a computer and much more powerful tools than a calculator.

It is easy to use scientific notation with a tool like Wolfram Alpha.

However, you may occasionally see them with the calculator if you multiply or divide large numbers or use the $y^{\mathbf{x}}$ key with large exponents.
$12^{21}=4.6 \times 10^{22}$
Now multiply by $\mathbf{9}^{13}$
$1.169 \times 10^{35}=1.169388422 \times 10^{35}$
Also, the largest exponent of $\mathbf{1 0}$ the calculator will accept is 99.

109^85 error
But, WA handles it just fine.

S5 FLO SCI ENG Formats Exercises

Using your calculator, convert the following numbers to both SCl and ENG. Q1. 640873.26

Q2. 2347168.002
Q3. 0.0002547

Using your calculator, convert the following numbers to both SCl and ENG, fixing each to the number digits past the decimal point as indicated.

Q4. 54178962.3 (3 digits past the decimal point)
Q5. 214697.0045 (2 digits past the decimal point)
Q6. 145879125 (4 digits past the decimal point)

Using your calculator, calculate the following numbers. If you receive an error message, use Wolfram Alpha.

Q7. $15^{26} \times 22^{3}=$
Q8. $26^{56} \times 32^{54}=$
Q9. $45^{-23} \times 16^{-13}=$
Q10. $18.45^{-56} \times 46.78^{-24}=$

A1. $\mathrm{SCl}=6.4087326 \times 10^{5} ; \mathrm{ENG}=640.87326 \times 10^{3}$
A2. $\mathrm{SCI}=2.347168002 \times 10^{6} ; \mathrm{ENG}=2.347168002 \times 10^{6}$
A3. $\mathrm{SCI}=2.547 \times 10^{-4} ; \mathrm{ENG}=254.7 \times 10^{-6}$
A4. $\mathrm{SCI}=5.418 \times 10^{7} ; \mathrm{ENG}=54.179 \times 10^{6}$
A5. $\mathrm{SCl}=2.15 \times 10^{5} ; \mathrm{ENG}=214.70 \times 10^{3}$
A6. $\mathrm{SCI}=1.4588 \times 10^{8} ; \mathrm{ENG}=145.8791 \times 10^{6}$
A7. 4.0331166×10^{34}
A8. Error
WA $26 \wedge 56 \times 32 \wedge 54$
$3.28553665 \times 10^{160}$
A9. $2.101611366 \times 10^{-54}$
A10. Interestingly, the calculator says " 0 " instead of "Error" WA 18.45^-56x46.78^-24
$1.053799609 \times 10^{-111}$

S5A FLO SCI ENG Formats Addendum

As we learned in S5, numbers can be expressed in three different formats.

FLO or Floating Point is the format you are familiar with. 64327.59 is an example.

SCI or scientific format
$64327.59=6.432759 \times 10^{4}$
ENG or engineering format
$64327.59=64.32759 \times 10^{3}$
What we haven't learned yet is how to enter a number in a SCI or ENG format into the calculator.

It is very easy. You just use the EE Key.
To enter 6.432759×10^{4}
J ust enter 6.432759 and Press the EE key,
Then enter 4, and you are done.
Now you can change it into any other format, and also you can save it in memory and the recall it in this format.

Similar for ENG format
J ust enter 64.32759 and Press EE, and then enter 3

You can also enter negative numbers.
Just press the + <-> - key before you press the EE Key.
6.432759 + <-> - EE 3

Enters the negative of this number

You can also enter a negative exponent by just pressing the + <-> - key before entering he exponent
6.432 EE + <-> - 4

Enters 6.432×10^{-4} or .00006432

Of course, you could also enter
-6.432×10^{-5} or -.00006432
$6.432+<->-E E 5+<->$ -

S6 Prefixes

In science and engineering Prefixes are used to change the size of units.

For example, Kilometer, km, means 1,000 Meters So, $1 \mathrm{~km}=1,000 \mathrm{~m}=10^{3} \mathrm{~m}$

1 centimeter $=.01 \mathrm{~m}=(1 / 100) \mathrm{m}=10^{-2} \mathrm{~m}=1 \mathrm{~cm}$
1 decimeter $=.1 \mathrm{~m}=(1 / 10) \mathrm{m}=10^{-1} \mathrm{~m}=1 \mathrm{dm}$
1 millimeter $=.001 \mathrm{~m}=(1 / 1000) \mathrm{m}=10^{-3} \mathrm{~m}=1 \mathrm{~mm}$
The most common Metric Prefixes are listed below along with their exponents of 10.

Ili (m)	-3	Kilo (K) +3	usand
micro(μ)	-6	Mega(M) +6	Million
nano (n)	-9	Giga (G) +9	Billion
pico (p)	-12	Tera (T) +12	Trillion
Examples: $27 \mathrm{nS}=27 \times 10^{-9} \mathrm{~S}=.000000027 \mathrm{~S}$			
$27 \mu \mathrm{~S}=27 \times 10^{-6} \mathrm{~S}=.000027 \mathrm{~S}$			
$45 \mathrm{GH}=45 \times 10^{9} \mathrm{H}=45000000000 \mathrm{H}$			
$78 \mathrm{~KB}=78 \times 10^{\mathbf{3}} \mathrm{B}=78000 \mathrm{~B}$			
$3.5 \mathrm{~K} \Omega=3500 \Omega$			

Now the laws or rules of exponents are:
$10^{\mathrm{n}} \times 10^{\mathrm{m}}=10^{\mathrm{n+m}}$ for any exponents \mathbf{n} and m
Also, $10^{0}=1$ and $10^{-n}=1 / 10^{n}$
So suppose we have, for example
$7 \mathrm{mAx8} \mathrm{M} \Omega=7 \times 10^{-3} \mathrm{~A} \times 8 \times 10^{6} \Omega=56 \times 10^{3} \mathrm{~V}=56 \mathrm{KV}$
Since, $1 \mathrm{Ax1}$ = 1 V [This is Ohm's Law]
Thus, we see $m \times M=K$ since $10^{-3} \times 10^{6}=10^{3}$
So we multiply, x, two prefixes to get one prefix by simply adding the exponents.
$m x G=M$ since $-3+9=6$
$m x m=\mu$ since $-3+-3=-6$
$n x K=\mu$ since $-9+3=-6$

If you are going to become an electrician or electronics technician you should learn this prefix table, and practice multiplying prefixes.

Then, you will use this along with the Technician's Triangle we will discuss in another lesson.
This will greatly simplify calculations you will be making when you troubleshoot electrical or electronic systems or equipment.

In the Metric system we use powers of 10
In the Digital system we use powers of 2.
Note: $\mathbf{2}^{\mathbf{1 0}}=1024 \approx 1000=10^{3}$

The most common Digital Prefixes are listed below along with their exponents of 2.

milli (m)	-10	Kilo (K) +10
icro(μ)	-20	Mega(M) +20
no (n)	-30	Giga (G) +30
pico (p)	-40	Tera ($\mathrm{T}^{\text {) }}$ +

If you are going to become a computer or communications technician, you will want to master this system as well. It works just like the metric system.

For example, $m S x M H=K C$ since $1 S x 1 H=1 C$
Because -10 + $20=+10$
The purpose of this Lesson is to make you aware of these Prefixes. You will want to master them IF you decide to learn a technical field where they are used a lot.

Prefix Product Table

	0	+3	+6	+9	+12
X	1	K	M	G	T
01	1	K	M	G	T
-3 m	m	1	K	M	G
-6 μ	$\boldsymbol{\mu}$	m	1	K	M
-9 n	n	$\boldsymbol{\mu}$	m	1	K
-12 p	p	n	$\boldsymbol{\mu}$	m	1

We will make use of this when we discuss the Technician's Triangle

Of course, this Table can be expanded, but this is what one usually uses.
For example, $m x n=p$
But, $\mu x n=\mathbf{f}$
$\mathbf{w h e r e}$ femto stands for $\mathbf{1 0}^{\mathbf{- 1 5}}$

Some Musings.
Most of us don't really appreciate the difference between a million and a billion

How long is one million seconds, 1 MS ?
11.57 days $\quad 1,000,000 / 60 / 60 / 24$

How long is one billion seconds, 1GS ?
32 years

11,570/ 365

How long is one trillion seconds, 1 TS ?
32,000 years.
Apply similar questions about our national debt and our money supply.

One million pennies is ten thousand dollars
One billion pennies is ten million dollars.
The DNA in one human cell is about $6 \mathbf{f t}$ long if it unwound. Of course, it is very thin. Similar to extending your little finger from LA to Paris.

There are about one trillion cells in your body. So how long would your DNA be if it was all strung out end to end? How about a billion miles?

S6 Prefixes Exercises

Q1. Using the generic unit of measure, S , and the metric prefixes, calculate the new prefix for the following problems.
a. $\mathrm{mS} \times \mathrm{nS}$
b. $m S \times M S$
c. $\mathrm{KS} \times \mathrm{MS}$
d. $\mu \mathrm{S} \times \mu \mathrm{S}$
e. $n S \times G S$
f. TS $\times \mu \mathrm{S}$
g. GS $\times \mathrm{KS}$
h. $\mathrm{mS} \times \mu \mathrm{S}$
i. $\mathrm{GS} \times \mathrm{pS}$
j. $T S \times \mu S$

Q2. Using the generic unit of measure, S , and the metric prefixes, convert the following to numbers.
a. 15 nS
b. 23 KS
c. 47 TS
d. $28 \mu \mathrm{~S}$
e. 84 GS
f. 18 MS
g. 43 pS
h. 98 mS
i. 4.2 mS
j. 3.84 GS

Q3. Using the generic unit of measure, S, and the digital prefixes, calculate the new prefix for the following problems.
a. $\mathrm{mS} \times \mathrm{nS}$
b. $m S \times M S$
c. $\mathrm{KS} \times \mathrm{MS}$
d. $\mu S \times \mu S$
e. $n S \times G S$
f. TS $x \mu \mathrm{~S}$
g. GS $\times \mathrm{KS}$
h. $m S \times \mu S$
i. $\mathrm{GS} \times \mathrm{pS}$
j. TS $\times \mu \mathrm{S}$

Q4. Using the generic unit of measure, S , and the digital prefixes, convert the following to numbers.
a. 15 nS
b. 23 KS
c. 47 TS
d. $28 \mu \mathrm{~S}$
e. 84 GS
f. 18 MS
g. 43 pS
h. 98 mS
i. 4.2 mS
j. 3.84 GS

A1.
a. $\mathrm{mS} \times \mathrm{nS}=10^{-3} \mathrm{~S} \times 10^{-9} \mathrm{~S}=10^{-12} \mathrm{~S}=\mathrm{pS}$
b. $\mathrm{mS} \times \mathrm{MS}=10^{-3} \mathrm{~S} \times 10^{6} \mathrm{~S}=10^{3} \mathrm{~S}=\mathrm{KS}$
c. $\mathrm{KS} \times \mathrm{MS}=10^{3} \mathrm{~S} \times 10^{6} \mathrm{~S}=10^{9} \mathrm{~S}=\mathrm{GS}$
d. $\mu \mathrm{S} \times \mu \mathrm{S}=10^{-6} \mathrm{~S} \times 10^{-6} \mathrm{~S}=10^{-12} \mathrm{~S}=\mathrm{pS}$
e. $\mathrm{nS} \times \mathrm{GS}=10^{-9} \mathrm{~S} \times 10^{9} \mathrm{~S}=10^{0} \mathrm{~S}=\mathrm{S}$
f. $T S \times \mu S=10^{12} S \times 10^{-6} S=10^{6} S=M S$
g. $\mathrm{GS} \times \mathrm{KS}=10^{9} \mathrm{~S} \times 10^{3} \mathrm{~S}=10^{12} \mathrm{~S}=\mathrm{TS}$
h. $\mathrm{mS} \times \mu \mathrm{S}=10^{-3} \mathrm{~S} \times 10^{-6} \mathrm{~S}=10^{-9} \mathrm{~S}=\mathrm{nS}$
i. $\mathrm{GS} \times \mathrm{pS}=10^{9} \mathrm{~S} \times 10^{-12} \mathrm{~S}=10^{-3} \mathrm{~S}=\mathrm{mS}$
j. $T S \times \mu S=10^{12} S \times 10^{-6} S=10^{6} S=M S$

A2.
a. $15 \mathrm{nS}=15 \times 10^{-9} \mathrm{~S}=0.000000015 \mathrm{~S}$
b. $23 \mathrm{KS}=23 \times 10^{3} \mathrm{~S}=23,000 \mathrm{~S}$
c. $47 \mathrm{TS}=47 \times 10^{12} \mathrm{~S}=47,000,000,000,000 \mathrm{~S}$
d. $28 \mu \mathrm{~S}=28 \times 10^{-6} \mathrm{~S}=0.000028 \mathrm{~S}$
e. $84 \mathrm{GS}=84 \times 10^{9} \mathrm{~S}=84,000,000,000 \mathrm{~S}$
f. $18 \mathrm{MS}=18 \times 10^{6} \mathrm{~S}=18,000,000 \mathrm{~S}$
g. $43 \mathrm{pS}=43 \times 10^{-12} \mathrm{~S}=0.000000000043 \mathrm{~S}$
h. $98 \mathrm{mS}=98 \times 10^{-3}=0.098 \mathrm{~S}$
i. $4.2 \mathrm{mS}=4.2 \times 10^{-3}=0.0042 \mathrm{~S}$
j. $3.84 \mathrm{GS}=3.84 \times 10^{9} \mathrm{~S}=3,840,000,000 \mathrm{~S}$

A3.
a. $\mathrm{mS} \times \mathrm{nS}=2^{-10} \mathrm{~S} \times 2^{-30} \mathrm{~S}=2^{-40} \mathrm{~S}=\mathrm{pS}$
b. $\mathrm{mS} \times \mathrm{MS}=2^{-10} \mathrm{~S} \times 2^{20} \mathrm{~S}=2^{10} \mathrm{~S}=\mathrm{KS}$
c. $\mathrm{KS} \times \mathrm{MS}=2^{10} \mathrm{~S} \times 2^{20} \mathrm{~S}=2^{30} \mathrm{~S}=\mathrm{GS}$
d. $\mu S \times \mu S=2^{-20} S \times 2^{-20} S=2^{-40} S=p S$
e. $n S \times G S=2^{-30} S \times 2^{30} S=2^{0} S=S$
f. $T S \times \mu S=2^{40} S \times 2^{-20} S=2^{20} S=M S$
g. $\mathrm{GS} \times \mathrm{KS}=2^{30} \mathrm{~S} \times 2^{10} \mathrm{~S}=2^{40} \mathrm{~S}=\mathrm{TS}$
h. $\mathrm{mS} \times \mu \mathrm{S}=2^{-10} \mathrm{~S} \times 2^{-20} \mathrm{~S}=2^{-30} \mathrm{~S}=\mathrm{nS}$
i. $\mathrm{GS} \times \mathrm{pS}=2^{30} \mathrm{~S} \times 2^{-40} \mathrm{~S}=2^{-10} \mathrm{~S}=\mathrm{mS}$
j. $T S \times \mu S=2^{40} S \times 2^{-20} S=2^{20} S=M S$

A4.
a. $15 \mathrm{nS}=15 \times 2^{-30} \mathrm{~S}=0.000000014 \mathrm{~S}$
b. $23 \mathrm{KS}=23 \times 2^{10} \mathrm{~S}=23,552 \mathrm{~S}$
c. $47 \mathrm{TS}=47 \times 2^{40} \mathrm{~S}=5.167704651 \times 10^{13} \mathrm{~S}$
d. $28 \mu \mathrm{~S}=28 \times 2^{-20} \mathrm{~S}=0.000026703 \mathrm{~S}$
e. $84 \mathrm{GS}=84 \times 2^{30} \mathrm{~S}=8,589,934,592 \mathrm{~S}$
f. $18 \mathrm{MS}=18 \times 2^{20} \mathrm{~S}=18,874,368 \mathrm{~S}$
g. $43 \mathrm{pS}=43 \times 2^{-40} \mathrm{~S}=3.910827218 \times 10^{-11} \mathrm{~S}$
h. $98 \mathrm{mS}=98 \times 2^{-10}=0.095703125 \mathrm{~S}$
i. $4.2 \mathrm{mS}=4.2 \times 2^{-10}=0.004101562 \mathrm{~S}$
j. $3.84 \mathrm{GS}=3.84 \times 2^{30} \mathrm{~S}=34,123,168,604 \mathrm{~S}$

S7 Technician's Triangle

Often one is faced with an equation $A=B x C$, where one must solve for one of these variables when the other two are known.

This yields three equations as you have learned.
$A=B x C$
$B=A / C$
$C=A / B$

Sometimes it is easiest to simply put this into what I call a Technician's Triangle. Then, one can "solve" the equation very easily.

Now to "solve" for any variable, just perform the calculation with the other two variables.
$A=B x C$
$B=A / C$
$C=A / B$

Things get interesting when the units involved have prefixes attached.

Let's look at an example from electronics.
Ohm's Law is $1 \mathrm{~V}=1 \mathrm{Ax} 1 \Omega$
Where V is Volts, A is Amps, Ω is Resistance

But, often one has to deal with prefixes attached to these units. For example, we might have
$5 \mu \mathrm{~A} \times 7 \mathrm{~K} \Omega=.000005 \times 7000 \mathrm{~V}=.035 \mathrm{~V}=35 \mathrm{mV}$
This is the way it has been dealt with classically.
There must be an easier way!

Well, there is.
We learned in the Prefixes lesson that
$\mu \times K=m$

This then leads us to the following Tech Triangle

Remember we know $\boldsymbol{\mu} \times \mathbf{K}=\mathbf{m}$
So, this then leads us to the following Tech Triangle

So, all we have to do to solve for any one of these given the other two is simply do the simple arithmetic.

This is much easier than the old fashioned way. $5 \mu \mathrm{Ax} 7 \mathrm{~K} \Omega=.000005 \times 7000 \mathrm{~V}=.035 \mathrm{~V}=35 \mathrm{mV}$ Or 35mV/7K $=.035 / 7000 \mathrm{~A}=.000005 \mathrm{~A}=5 \mu \mathrm{~A}$ Or 35mV/5 $\mathrm{A}=.035 / .000005 \Omega=7000 \Omega=7 \mathrm{~K} \Omega$

It was amazing how many times engineers and technicians got the decimal place wrong and were off by an order of magnitude, i.e. 10x

So, quick now, what is $\mathbf{7} \mathrm{mA}$ times $\mathbf{8} \mathbf{M} \boldsymbol{\mathrm { M }}$?

So, quick now, what is $\mathbf{7} \mathrm{mA}$ times $\mathbf{8} \mathbf{M} \boldsymbol{\mathrm { M }}$?
Remember we know m x M = K
So, this then leads us to the following Tech Triangle

Answer: 56 KV
This is much easier than the old fashioned way.
So, quick now, what is $\mathbf{7} \mathrm{mA}$ times $\mathbf{8} \mathbf{M} \boldsymbol{?}$?
Try it the old fashioned way, if you want to experience what some of our ancestors went through. Even with slide rules and log tables it was more difficult than with a calculator. But, it is even easy to make a mistake with a calculator doing it the old fashioned way.

Try $2.4 \mathrm{~mA} \times 6.7 \mathrm{M} \Omega$ Use the $\mathrm{TT}, \mathrm{mxM}=\mathrm{K}$
Answer: 2.4x6.7 KV = 16 KV

OK one more, quick. 27 KV across a $12 \mathrm{G} \Omega$ resistor yields how many amps, A?

So, this then leads us to the following Tech Triangle

Well look in the Prefix Table.
What times G yields K? Answer: μ
[G is +9 and K is +3 , So we need a -6 since
$9+(-6)=+3$, So, we need a μ and $G x \mu=K$]
So, the answer is $27 / 12 \mu \mathrm{~A}=2.25 \mu \mathrm{~A}$
This is much easier than the old fashioned way.
Try it the old fashioned way, if you want to experience what some of our ancestors went through. They didn't even have calculators. But, our calculator won't even take this many 0's in FLO so you would have to use SCI format.

27000/12000000000 = . 00000225

There are many fields where you have an equation like $1 A=1 B \times 1 C$ where A, B, C are some units.

Then, a Technician's Triangle will apply.
You will need to learn the Prefixes and remember to multiply two prefixes you just add their exponents of their power of 10, or of their power of 2 in the digital case.

Then the calculations will be easy to perform.

Where $\mathbf{P}_{\mathbf{1}}=\mathbf{P}_{\mathbf{2}} \times \mathbf{P}_{3}$, from the Table of Prefixes

This is much easier than the old fashioned way.
Simply practice in whatever technical field you are in with the relevant equations.

S7 Technician's Triangle Exercises

Solve for the unknown using metric prefixes.
Q1. Ohm's Law: $1 \mathrm{~V}=1 \mathrm{~A} \times 1 \Omega$

Q2. Ohm's Law: $1 \mathrm{~V}=1 \mathrm{Ax} 1 \Omega$

Q3. Ohm's Law: $1 \mathrm{~V}=1 \mathrm{~A} \times 1 \Omega$

Q4. $\mathrm{P}=\mathrm{I} \times \mathrm{V}$ (power $=$ current \times volts $)$
Units: $\mathrm{W}=\mathrm{A} \times \mathrm{V}$ (watts $=\mathrm{amps} \times$ volts)

Q5. $\mathrm{P}=\mathrm{I} \times \mathrm{V} \quad$ Units: $\mathrm{W}=\mathrm{A} \times \mathrm{V}$

Q6. $\mathrm{P}=\mathrm{I} \times \mathrm{V} \quad$ Units: $\mathrm{W}=\mathrm{A} \times \mathrm{V}$

Q7. Ohm's Law: $1 \mathrm{~V}=1 \mathrm{~A} \times 1 \Omega$

Q8. Ohm's Law: $1 \mathrm{~V}=1 \mathrm{Ax} 1 \Omega$

Q9. $\mathrm{P}=\mathrm{I} \times \mathrm{V} \quad$ Units: $\mathrm{W}=\mathrm{A} \times \mathrm{V}$

Q10. $P=I \times V \quad$ Units: $W=A \times V$

A1. $27 \mathrm{nV}=? \mathrm{~A} \times 3 \mathrm{p} \Omega$

$$
\mathrm{n}=?+\mathrm{p} \quad-->-9=?+-12 \text {--> } ?=+3-->K
$$

$27 \mathrm{nV}=? \mathrm{KA} \times 3 \mathrm{p} \Omega$

$$
27=? \times 3->?=9
$$

Unknown: 9KA

$$
27 \mathrm{nV}=9 K A \times 3 p \Omega
$$

A2. $12 \mathrm{MV}=8 \mathrm{TA} \times ? \Omega$

$$
\mathrm{M}=\mathrm{T}+? \quad-->+6=+12+?-->?=-6-->\mu
$$

$12 \mathrm{MV}=8 \mathrm{TA} \times ? \mu \Omega$

$$
12=8 \times ?->?=1.5
$$

Unknown: $1.5 \mu \Omega$

$$
12 \mathrm{MV}=8 \mathrm{TA} \times 1.5 \mu \Omega
$$

A3. $? V=5 \mathrm{~mA} \times 4 \mathrm{n} \Omega$

$$
?=m+n \quad-->?=(-3)+(-9) \quad-->?=-12-->p
$$

$$
\begin{aligned}
& ? \mathrm{pV}=5 \mathrm{~mA} \times 4 \mathrm{n} \Omega \\
& \quad ?=5 \times 4->?=20
\end{aligned}
$$

Unknown: 20pV

$$
20 \mathrm{pV}=5 \mathrm{~mA} \times 4 \mathrm{n} \Omega
$$

A4. $18 \mathrm{KW}=3 \mathrm{MA} \times$? V

$$
K=M+? \quad-->+3=+6+? ~-->?=-3-->m
$$

$18 \mathrm{KW}=3 \mathrm{MA} \times ? \mathrm{mV}$

$$
18=3 \times ?->?=6
$$

Unknown: 6 mV

$$
18 \mathrm{KW}=3 \mathrm{MA} \times 6 \mathrm{mV}
$$

A5. $0.5 \mathrm{~mW}=? \mathrm{~A} \times 6 \mu \mathrm{~V}$

$$
m=?+\mu \quad-->-3=?+(-6)-->=+3-->K
$$

$0.5 \mathrm{~mW}=? \mathrm{KA} \times 6 \mu \mathrm{~V}$

$$
0.5=? \times 6->?=1 / 12 \text { or } 0.083
$$

Unknown: 0.083KA
$0.5 \mathrm{~mW}=0.083 \mathrm{KA} \times 6 \mu \mathrm{~V}$
A6. $? \mathrm{~W}=1.5 \mathrm{MA} \times 8 \mathrm{mV}$

$$
?=M+m \quad-->\quad ?=+6+(-3) \quad-->=+3-->K
$$

? $\mathrm{KW}=1.5 \mathrm{MA} \times 8 \mathrm{mV}$

$$
?=1.5 \times 8->?=12
$$

Unknown: 12KW

$$
12 \mathrm{KW}=1.5 \mathrm{MA} \times 8 \mathrm{mV}
$$

A7. $0.8 \mu \mathrm{~V}=? \mathrm{~A} \times 1.6 \mathrm{p} \Omega$

$$
\mu=?+p \quad-->-6=?+(-9)-->?=+3-->K
$$

$0.8 \mu \mathrm{~V}=$? $\mathrm{KA} \times 1.6 \mathrm{p} \Omega$

$$
0.8=? \times 1.6->?=0.5
$$

Unknown: 0.5KA

$$
0.8 \mu V=0.5 K A \times 1.6 p \Omega
$$

A8. $\quad \mathrm{V}=1.4 \mu \mathrm{~A} \times 0.75 \mathrm{~m} \Omega$

$$
?=\mu+m \quad-->?=(-6)+(-3)-->\quad ?=-9-->n
$$

$$
\begin{aligned}
& ? \mathrm{nV}=1.4 \mu \mathrm{~A} \times 0.75 \mathrm{~m} \Omega \\
& \quad ?=1.4 \times 0.75->\quad ?=1.05
\end{aligned}
$$

Unknown: 1.05 nV

$$
1.05 \mathrm{nV}=1.4 \mu \mathrm{~A} \times 0.75 \mathrm{~m} \Omega
$$

A9. $0.45 \mathrm{pW}=? \mathrm{~A} \times 1.78 \mu \mathrm{~V}$

$$
p=?+\mu-->-12=-6+?-->=-6-->\mu
$$

$$
0.45 \mathrm{pW}=? \mu \mathrm{~A} \times 1.78 \mu \mathrm{~V}
$$

$$
0.45=? \times 1.78->?=0.253
$$

Unknown: $0.253 \mu \mathrm{~A}$

$$
0.45 \mathrm{pW}=0.253 \mu \mathrm{~A} \times 1.78 \mu \mathrm{~V}
$$

A10. $1.8 \mathrm{~mW}=2.74 \mathrm{MA} \times ? \mathrm{~V}$

$$
m=M+? ~-->-3=+6+?-->=-9-->n
$$

$1.8 \mathrm{~mW}=2.74 \mathrm{MA} \times \mathrm{nV}$
$1.8=2.74 \times$? $->$? $=0.657$
Unknown: 0.657nV
$1.8 \mathrm{~mW}=2.74 \mathrm{MA} \times 0.657 \mathrm{nV}$

S8 Polar Rectangular Coordinates

In the plane, there are two ways to specify a point. Rectangular Coordinates (x, y)

Polar Coordinates ($\mathrm{r}, \boldsymbol{\theta}$) where $r=\left(x^{2}+y^{2}\right)^{1 / 2}$,
$\theta=\tan ^{-1}(y / x)$ in Quadrants 1 and 4
and $\theta=\tan ^{-1}(y / x)+180^{\circ}$ in Quads 2 and 3

Example 1: $(4,3)=\left(5,36.87^{\circ}\right)$ since $\tan ^{-1}(3 / 4)=36.87^{\circ}$ and $5=\left(4^{2}+3^{2}\right)^{1 / 2}$

Example 2: $(-4,3)=\left(5,143.13^{\circ}\right)$ since $\tan ^{-1}(-3 / 4)=-36.87^{\circ}+180^{\circ}=143.13^{\circ}$

Fortunately, the TI 30Xa will do this automatically with the $R \rightarrow P$ and $P \rightarrow R$ Keys. $2^{\text {nd }} .2$ This fixes the display to two digits past.

Function	Key	Enter	Display
	4	4	
$x<-->y$	$2^{\text {nd }} \boldsymbol{m}$		0.00
	3	3	
$R<-->P$	$2^{\text {nd }}-$		5.00
$x<-->y$	$2^{\text {nd }} \boldsymbol{m}$		36.87

Function	Key	Enter	Display
	4	4	
$+<->-$		-4	
$x<-->y$	$2^{\text {nd }} \boldsymbol{n}$		0.00
	3	3	
R<-->P	$2^{\text {nd }}-$		5.00
$x<-->y$	$2^{\text {nd }} \pi$		143.13

You can go from P to R also.

Function	Key	Enter	Display
		5	5
$x<-->y$	$2^{\text {nd }} n$		0.00
		143.13	143.13
$\mathbf{P}<-->\mathrm{R}$	$2^{\text {nd }} \mathrm{x}$		-3.9999
x <--> y	$2^{\text {nd }} \pi$		3.00

Note: All of this works if you use RAD or GRAD for the degrees, for those of you who are more advanced in trigonometry.

Now just do some Exercises
$(4,9)=\left(9.85,66.03^{\circ}\right)$
R to \mathbf{P}
$\left(7,197^{\circ}\right)=(-6.69,-2.05)$
P to \mathbf{R}

S8 Polar Rectangular Coordinates Exercises

For the following exercises, graph the rectangular coordinates to determine quadrant, then solve for the polar coordinates.

Q1. $(5,12)$
Q2. $(8,15)$
Q3. $(-8,-15)$
Q4. (-4.5, 6.3)
Q5. (3.7, -8.2)
Q6. (-8.9, -12.5)
For the following exercises, solve for the rectangular coordinates.
Q7. $\left(9,45^{\circ}\right)$
Q8. $\left(6,32^{\circ}\right)$
Q9. $\left(12,127^{\circ}\right)$
Q10. (4.7, 118.6 $)$
Q11. (5.6, 210°)
Q12. (7.8, 301.9 ${ }^{\circ}$)
Using the R to P button on your calculator, convert these rectangular coordinates to polar coordinates.

Q13. $(5,7)$
Q14. $(8,13)$
Q15. (-7, 16)
Q16. (6.3, -8.2)
Using the P to R button on your calculator, convert these rectangular coordinates to polar coordinates.

Q17. (9, 27°)
Q18. $\left(10,75^{\circ}\right)$
Q19. (4.7, 190.5 ${ }^{\circ}$)
Q20. (13.45, 347)

A1. $r=\left(x^{2}+y^{2}\right)^{1 / 2}$

$$
\begin{aligned}
& r=\left(5^{2}+12^{2}\right)^{1 / 2} \\
& r=13
\end{aligned}
$$

Plot:

Quadrant 1

$$
\begin{aligned}
& \Theta=\tan ^{-1}(y / x) \\
& \Theta=\tan ^{-1}(12 / 5) \\
& \Theta=67.38^{\circ}
\end{aligned}
$$

(13, $\left.67.38^{\circ}\right)$
A2. $r=\left(x^{2}+y^{2}\right)^{1 / 2}$

$$
\begin{aligned}
& r=\left(8^{2}+15^{2}\right)^{1 / 2} \\
& r=17
\end{aligned}
$$

Plot:

Quadrant 1

$$
\begin{aligned}
& \Theta=\tan ^{-1}(y / x) \\
& \Theta=\tan ^{-1}(15 / 8) \\
& \Theta=61.93^{\circ} \\
& \left(17,61.93^{\circ}\right)
\end{aligned}
$$

A3. $r=\left(x^{2}+y^{2}\right)^{1 / 2}$

$$
\begin{aligned}
& r=\left((-8)^{2}+(-15)^{2}\right)^{1 / 2} \\
& r=17
\end{aligned}
$$

Plot:

Quadrant 3

$$
\begin{aligned}
& \Theta=\tan ^{-1}(\mathrm{y} / \mathrm{x})+180^{\circ} \\
& \Theta=\tan ^{-1}(-15 /-8)+180^{\circ} \\
& \Theta=241.93^{\circ} \\
& \left(17,241.93^{\circ}\right)
\end{aligned}
$$

A4. $r=\left(x^{2}+y^{2}\right)^{1 / 2}$

$$
\begin{aligned}
& r=\left((-4.5)^{2}+6.3^{2}\right)^{1 / 2} \\
& r=7.74
\end{aligned}
$$

Quadrant 2

$$
\begin{aligned}
& \Theta=\tan ^{-1}(y / x)+180^{\circ} \\
& \Theta=\tan ^{-1}(-4.5 / 6.3)+180^{\circ} \\
& \Theta=144.46^{\circ}
\end{aligned}
$$

(7.74, 144.46 ${ }^{\circ}$)

A5. $r=\left(x^{2}+y^{2}\right)^{1 / 2}$

$$
\begin{aligned}
& r=\left(3.7^{2}+(-8.2)^{2}\right)^{1 / 2} \\
& r=9.00
\end{aligned}
$$

Plot:

Quadrant 4

$$
\begin{aligned}
& \Theta=\tan ^{-1}(y / x) \\
& \Theta=\tan ^{-1}(3.7 /-8.2) \\
& \Theta=-24.29^{\circ}=-24.29^{\circ}+360^{\circ}=335.71^{\circ}
\end{aligned}
$$

$$
\left(9.00,-24.29^{\circ}\right) \text { or }\left(9.00,335.71^{\circ}\right)
$$

A6. $r=\left(x^{2}+y^{2}\right)^{1 / 2}$

$$
\begin{aligned}
& r=\left((-8.9)^{2}+(-12.5)^{2}\right)^{1 / 2} \\
& r=15.35
\end{aligned}
$$

Plot:

Quadrant 3
$\Theta=\tan ^{-1}(y / x)+180^{\circ}$
$\Theta=\tan ^{-1}(-8.9 /-12.5)+180^{\circ}$
$\Theta=215.45^{\circ}$
$\left(15.35,215.45^{\circ}\right)$
A7. $x=r \cos (\Theta)$
$x=9 \cos \left(45^{\circ}\right)$
$x=6.36$
$y=r \sin (\Theta)$
$y=9 \sin \left(45^{\circ}\right)$
$y=6.36$
(6.36, 6.36)

A8. $x=r \cos (\Theta)$
$x=6 \cos \left(32^{\circ}\right)$
$x=5.09$
$y=r \sin (\Theta)$

$$
\begin{aligned}
& y=6 \sin \left(32^{\circ}\right) \\
& y=3.18 \\
& (5.09,3.18)
\end{aligned}
$$

A9. $x=r \cos (\Theta)$

$$
x=12 \cos \left(127^{\circ}\right)
$$

$$
x=-7.22
$$

$$
y=r \sin (\Theta)
$$

$$
y=12 \sin \left(127^{\circ}\right)
$$

$$
y=9.58
$$

$$
(-7.22,9.58)
$$

A10. $x=r \cos (\Theta)$
$x=4.7 \cos \left(118.6^{\circ}\right)$
$x=-2.25$
$y=r \sin (\Theta)$
$y=4.7 \sin \left(118.6^{\circ}\right)$
$y=4.13$
$(-2.25,4.13)$
A11. $x=r \cos (\Theta)$
$x=5.6 \cos \left(210^{\circ}\right)$
$x=-4.8$
$y=r \sin (\Theta)$
$y=5.6 \sin \left(210^{\circ}\right)$
$y=-2.8$
$(-4.8,-2.8)$
A12. $x=r \cos (\Theta)$
$x=7.8 \cos \left(301.9^{\circ}\right)$
$x=4.12$

$$
y=r \sin (\Theta)
$$

$$
y=7.8 \sin \left(301.9^{\circ}\right)
$$

$$
y=-6.62
$$

(4.12, -6.62)

A13. (8.60, 54.46º)
A14. $\left(15.26,58.39^{\circ}\right)$
A15. $\left(17.46,113.63^{\circ}\right)$
A16. $\left(10.34,-52.47^{\circ}\right)$ or $\left(10.34,307.53^{\circ}\right) \quad-52.47^{\circ}+360^{\circ}=307.53^{\circ}$
A17. (8.02, 4.09)
A18. (2.59, 9.66)
A19. (-4.62, -0.86)
A20. (13.11, -3.03)
Note: $\left(13.45,-13^{\circ}\right)$ will get you the same answer because $347^{\circ}-360^{\circ}=-13^{\circ}$

